

Contents lists available at ScienceDirect

Linear Algebra and its Applications

On characterization of operator monotone functions

Dinh Trung Hoa a,b,c,*,1

- ^a Division of Computational Mathematics and Engineering (CME), Institute for Computational Science (INCOS), Ton Duc Thang University, Ho Chi Minh City, Viet Nam
- ^b Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
- ^c Department of Mathematics and Statistics, Auburn University, Auburn, AL, USA

ARTICLE INFO

Article history: Received 17 April 2015 Accepted 11 September 2015 Available online 25 September 2015 Submitted by P. Semrl

MSC: 46L30 15A45

Keywords: Characterization of operator monotonicity Mean of positive matrices Reverse Cauchy inequality

ABSTRACT

In this paper, we will show a new characterization of operator monotone functions by a matrix reverse Cauchy inequality. © 2015 Elsevier Inc. All rights reserved.

^{*} Correspondence to: Division of Computational Mathematics and Engineering (CME), Institute for Computational Science (INCOS), Ton Duc Thang University, Ho Chi Minh City, Viet Nam.

E-mail addresses: dinhtrunghoa@tdt.edu.vn, dzt0022@auburn.edu.

 $^{^{1}}$ This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.04-2014.40.

1. Introduction

Let M_n be the space of $n \times n$ complex matrices, M_n^h the self-adjoint part of M_n . For $A, B \in M_n^h$, the notation $A \leq B$ means that $B - A \in M_n^+$. The spectrum of a matrix $A \in M_n$ is denoted by $\sigma(A)$. For a real-valued function f of a real variable and a matrix $A \in M_n^h$, the value f(A) is understood by means of the functional calculus for Hermitian matrices.

Taking an axiomatic approach, Kubo and Ando introduced the notions of connection and mean. A binary operation σ defined on the set of positive definite matrices is called a *connection* if

- (i) $A \leq C, B \leq D$ imply $A \sigma B \leq B \sigma D$;
- (ii) $C^*(A\sigma B)C \leq (C^*AC)\sigma(C^*BC)$;
- (iii) $A_n \downarrow A$ and $B_n \downarrow B$ imply $A_n \sigma B_n \downarrow A \sigma B$.

If $I\sigma I = I$, then σ is called a *mean*.

For A, B > 0, the geometric mean $A \sharp B$ is defined by

$$A \sharp B = A^{1/2} (A^{-1/2} B A^{-1/2})^{1/2} A^{1/2}.$$

The harmonic A!B and arithmetic $A\nabla B$ means are defined $A!B = 2(A^{-1} + B^{-1})^{-1}$ and $A\nabla B = \frac{A+B}{2}$, respectively. A mean σ is called to be symmetric if $A\sigma B = B\sigma A$ for any pair of positive definite matrices A, B.

It is well-known that the arithmetic mean ∇ is the biggest among symmetric means. From the general theory of symmetric matrix means we know that $\nabla \geq \sigma$ and $\tau \geq !$.

For positive real numbers a,b, the arithmetic–geometric mean inequality (AGM) says that

$$\sqrt{ab} \leq \frac{a+b}{2}$$
.

Hences, for a monotone increasing function f on $[0, \infty)$, we have

$$f(\sqrt{ab}) \le f(\frac{a+b}{2}). \tag{1}$$

It is natural to ask that if inequality (1) holds for any pair of positive number a, b will the function f be monotone increasing on $[0, \infty)$? The answer is positive, and follows from the elementary fact that for any positive numbers $a \le b$ there exist positive number x, y such that a is arithmetic mean and b is geometric mean of x, y.

The matrix version of above fact was investigated by Prof. T. Ando and Prof. F. Hiai [3]. They showed that the Cauchy inequality characterizes operator monotone functions, that means, if the following inequality holds

Download English Version:

https://daneshyari.com/en/article/4598857

Download Persian Version:

https://daneshyari.com/article/4598857

Daneshyari.com