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monotone functions by a matrix reverse Cauchy inequality.
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1. Introduction

Let Mn be the space of n × n complex matrices, Mh
n the self-adjoint part of Mn. For 

A, B ∈ Mh
n , the notation A ≤ B means that B − A ∈ M+

n . The spectrum of a matrix 
A ∈ Mn is denoted by σ(A). For a real-valued function f of a real variable and a matrix 
A ∈ Mh

n , the value f(A) is understood by means of the functional calculus for Hermitian 
matrices.

Taking an axiomatic approach, Kubo and Ando introduced the notions of connection 
and mean. A binary operation σ defined on the set of positive definite matrices is called 
a connection if

(i) A ≤ C, B ≤ D imply AσB ≤ BσD;
(ii) C∗(AσB)C ≤ (C∗AC)σ(C∗BC);
(iii) An ↓ A and Bn ↓ B imply AnσBn ↓ AσB.

If IσI = I, then σ is called a mean.
For A, B > 0, the geometric mean A�B is defined by

A�B = A1/2(A−1/2BA−1/2)1/2A1/2.

The harmonic A!B and arithmetic A∇B means are defined A!B = 2(A−1 +B−1)−1 and 

A∇B = A + B

2 , respectively. A mean σ is called to be symmetric if AσB = BσA for 
any pair of positive definite matrices A, B.

It is well-known that the arithmetic mean ∇ is the biggest among symmetric means. 
From the general theory of symmetric matrix means we know that ∇ ≥ σ and τ ≥!.

For positive real numbers a, b, the arithmetic–geometric mean inequality (AGM) says 
that

√
ab ≤ a + b

2 .

Hences, for a monotone increasing function f on [0, ∞), we have

f(
√
ab) ≤ f(a + b

2 ). (1)

It is natural to ask that if inequality (1) holds for any pair of positive number a, b will 
the function f be monotone increasing on [0, ∞)? The answer is positive, and follows 
from the elementary fact that for any positive numbers a ≤ b there exist positive number 
x, y such that a is arithmetic mean and b is geometric mean of x, y.

The matrix version of above fact was investigated by Prof. T. Ando and Prof. F. Hiai 
[3]. They showed that the Cauchy inequality characterizes operator monotone functions, 
that means, if the following inequality holds
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