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We present a new algorithm for solving an eigenvalue 
problem for a real symmetric matrix which is a rank-one 
modification of a diagonal matrix. The algorithm computes 
each eigenvalue and all components of the corresponding 
eigenvector with high relative accuracy in O(n) operations. 
The algorithm is based on a shift-and-invert approach. Only 
a single element of the inverse of the shifted matrix eventually 
needs to be computed with double the working precision. 
Each eigenvalue and the corresponding eigenvector can be 
computed separately, which makes the algorithm adaptable 
for parallel computing. Our results extend to the complex 
Hermitian case. The algorithm is similar to the algorithm for 
solving the eigenvalue problem for real symmetric arrowhead 
matrices from N. Jakovčević Stor et al. (2015) [16].
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1. Introduction and preliminaries

In this paper we consider the eigenvalue problem for an n ×n real symmetric matrix A

of the form

A = D + ρzzT , (1)

where

D = diag(d1, d2, . . . , dn)

is a diagonal matrix of order n,

z =
[
ζ1 ζ2 · · · ζn

]T
is a vector and ρ �= 0 is a scalar. Notice that A is a rank-one modification of a diagonal 
matrix. Subsequently, we shall refer to such matrices as “diagonal-plus-rank-one” (DPR1) 
matrices. DPR1 matrices arise, for example, in solving symmetric real tridiagonal eigen-
value problems with the divide-and-conquer method [6], [9], [13], [25, Sections 3.2.1 
and 3.2.2], [26, Section III.10].

Without loss of generality, we make the following assumptions:

– ρ > 0 (otherwise we consider the matrix A = −D − ρzzT ),
– A is irreducible, that is, ζi �= 0, i = 1, . . . , n, and di �= dj , for all i �= j, i, j = 1, . . . , n, 

and
– the diagonal elements of D are decreasingly ordered,

d1 > d2 > · · · > dn. (2)

Indeed, if ζi = 0 for some i, then the diagonal element di is an eigenvalue whose corre-
sponding eigenvector is the i-th unit vector, and if di = dj , then di is an eigenvalue of the 
matrix A (we can reduce the size of the problem by annihilating ζj with a Givens rota-
tion in the (i, j)-plane). Ordering of the diagonal elements of D is attained by symmetric 
row and column pivoting.

Let

A = V ΛV T

be the eigenvalue decomposition of A, where

Λ = diag(λ1, λ2, . . . , λn)

is a diagonal matrix whose diagonal elements are the eigenvalues of A, and

V =
[
v1 · · · vn

]
is an orthonormal matrix whose columns are the corresponding eigenvectors.
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