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We define a (pseudo-)distance between graphs based on the 
spectrum of the normalized Laplacian. Since this quantity 
can be computed easily, or at numerically estimated, it is 
suitable for comparing in particular large graphs. Numerical 
experiments demonstrate that the spectral distance provides 
a practically useful measure of graph dissimilarity. The 
asymptotic behavior of the Laplacian spectrum furthermore 
yields a tool for classifying families of graphs in such a way 
that the distance of two graphs from the same family is 
bounded by O(1/n) in terms of size n of their vertex sets.
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1. Introduction

Structural comparison of graphs has important applications in biology and pattern 
recognition, see e.g. [1,2]. The problem comes in two distinct flavors: it is compara-
bly easy when correspondences between nodes are known. This is the case e.g. for the 
comparison of metabolic networks or protein–protein interaction networks [3]. The prob-
lem becomes much more difficult when node correspondences are unknown, as is the 
case e.g. in the atom-mapping problem reviewed in [4]. A classical combinatorial for-
mulation of the latter problem is to find the largest graph G that is isomorphic to 
a subgraph of each of two given input graphs G1 and G2. A natural metric distance 
is given by dMCSI (G1, G2) := ‖G1 \ G‖ + ‖G2 \ G‖, were ‖ · ‖ is measure of graph 
size, e.g. the sum of edges and vertices. The main difficulty for practical applications 
is that “maximum common subgraph isomorphism problem” is NP-complete [5,6] and 
even APX-hard [7].

For large graphs, thus, more computationally efficient distance measures are required. 
Graph kernels [8] describe graphs as vectors of features, usually the occurrence data of 
small subgraphs have increasingly been used in bioinformatics [9] and chemoinformatics 
[10]. A related approach computed the earth movement (Wasserstein) distance between 
the distributions of graph features [11]. A practical difficulty is the fact that a very large 
number of features is required to achieve sufficient resolution for very large graphs.

Here we pursue a different approach that makes use of the representation of graphs by 
its adjacency or its Laplacian matrix. Spectral properties of these matrix representation 
are closely related to the graph structure [12,13]. Spectral graph theory in turn has 
received much inspiration from eigenvalue estimates in Riemannian geometry, see e.g. 
[12,14,15]. Many of the estimates and bounds for graph properties involve only particular 
eigenvalues, such as the smallest or largest.

Here we compare the entire spectra of two graphs [16]. This approach is attractive 
because there are very efficient and numerically stable algorithms for computing the 
eigenvalues of a large (N×N)-matrix, in fact with an effort of only O(N2) in practice [17]. 
For the set of graphs of the same size, a spectral distance based on the adjacency matrix 
was suggested by Richard Brualdi ([18], Problem AWGS.4) as a cospectral measure and 
further studied in [19]. In a related approach, the rank ordered list of eigenvalues is 
padded by 0 entries if the graphs have different size [20].

The spectrum does not uniquely determine a graph, i.e., there are pairs of non-
isomorphic graphs with the same Laplacian or adjacency spectrum [21]. Although it 
remains an open problem what fraction of graphs is uniquely determined by its spec-
trum [22,17], we shall see that the comparison of graph spectra nevertheless provides 
a sensitive and computationally attractive graph distance. We propose here a spectral 
distance associated with the normalized Laplacian instead of the adjacency matrix, with-
out any constraint on the graph sizes. The reason is that the normalized Laplacian, with 
its natural interpretation in terms of random walks or diffusion, seems to capture some 
geometric properties better than the adjacency matrix.
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