Graph functions maximized on a path

Celso Marques da Silva Jr. ${ }^{\text {a,*,1 }}$, Vladimir Nikiforov ${ }^{\text {b }}$
${ }^{\text {a }}$ PEP-COPPE, Universidade Federal do Rio de Janeiro and Centro Federal de
Educação Tecnológica Celso Suckow da Fonseca, Rio de Janeiro, Brazil
b Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA

A R T I C L E I N F O

Article history:

Received 29 December 2014
Accepted 9 July 2015
Available online 25 July 2015
Submitted by R. Brualdi

$M S C$:

15A42
05 C 50

Keywords:

Distance matrix
Distance Laplacian
Distance signless Laplacian
Largest eigenvalue
Path

A B S T R A C T

Given a connected graph G of order n and a nonnegative symmetric matrix $A=\left[a_{i, j}\right]$ of order n, define the function $F_{A}(G)$ as

$$
F_{A}(G)=\sum_{1 \leq i<j \leq n} d_{G}(i, j) a_{i, j}
$$

where $d_{G}(i, j)$ denotes the distance between the vertices i and j in G.
In this note it is shown that $F_{A}(G) \leq F_{A}(P)$ for some path of order n. Moreover, if each row of A has at most one zero off-diagonal entry, then $F_{A}(G)<F_{A}(P)$ for some path of order n, unless G itself is a path.
In particular, this result implies two conjectures of Aouchiche and Hansen:

- the spectral radius of the distance Laplacian of a connected graph G of order n is maximal if and only if G is a path;
- the spectral radius of the distance signless Laplacian of a connected graph G of order n is maximal if and only if G is a path.

[^0]
1. Introduction and main results

The aim of the present note is to give a general approach to problems like the following conjectures of Aouchiche and Hansen [1,2]:

Conjecture 1. The largest eigenvalue of the distance Laplacian of a connected graph G of order n is maximal if and only if G is a path.

Conjecture 2. The largest eigenvalue of the distance signless Laplacian of a connected graph G of order n is maximal if and only if G is a path.

First, let us introduce some notation and recall a few definitions. We write $\lambda(A)$ for the largest eigenvalue of a symmetric matrix A. Given a connected graph G, let $D(G)$ be the distance matrix of G, and let $T(G)$ be the diagonal matrix of the rowsums of $D(G)$. The matrix $D^{L}(G)=T(G)-D(G)$ is called the distance Laplacian of G, and the matrix $D^{Q}(G)=T(G)+D(G)$ is called the distance signless Laplacian of G. The matrices $D^{L}(G)$ and $D^{Q}(G)$ have been introduced by Aouchiche and Hansen and have been intensively studied recently, see, e.g., [1-3,5,7,12].

Very recently, Lin and Lu [5] succeeded to prove Conjecture 2, but Conjecture 1 seems a bit more difficult and still holds. Furthermore, Conjectures 1 and 2 suggest a similar problem for the distance matrix itself. As it turns out such problem has been partially solved a while ago by Ruzieh and Powers [9], who showed that the largest eigenvalue of the distance matrix of a connected graph G of order n is maximal if G is a path. The complete solution, however, was given more recently by Stevanović and Ilić [10].

Theorem 3. (See [9,10].) The largest eigenvalue of the distance matrix of a connected graph G of order n is maximal if and only if G is a path.

These result are believed to belong to spectral graph theory, and their proofs involve nonnegligible amount of calculations. Our goal is to show that all these result stem from a much more general assertion that has nothing to do with eigenvalues. To this end, we shall introduce a fairly general graph function and shall study its maxima.

1.1. The function $F_{A}(G)$ and its maxima

Let G be a connected graph of order n. Write $d_{G}(i, j)$ for the distance between the vertices i and j in G, and let $A=\left[a_{i, j}\right]$ be a nonnegative symmetric matrix of order n. Define the function $F_{A}(G)$ as

https://daneshyari.com/en/article/4598893

Download Persian Version:

https://daneshyari.com/article/4598893

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: celsomjr@gmail.com (C. Marques da Silva), vnikifrv@memphis.edu (V. Nikiforov).
 ${ }^{1}$ Research partially supported by CNPq-Brazil (grant Nr. 143082/2011-6).

