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The number field sieve is the most efficient known algorithm 
for factoring large integers that are free of small prime factors. 
For the polynomial selection stage of the algorithm, Mont-
gomery proposed a method of generating polynomials which 
relies on the construction of small modular geometric progres-
sions. Montgomery’s method is analysed in this paper and the 
existence of suitable geometric progressions is considered.
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1. Introduction

In this paper, N denotes a positive integer that is destined to be factored. When 
N is large and free of small factors, the most efficient publicly known algorithm for 
determining its factors is the number field sieve [20]. Such N include RSA [28] moduli, 
for which numerous record factorisations have been achieved with the number field sieve, 
including the current 768-bit record [17].
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The number field sieve is comprised of several stages, commonly referred to as poly-
nomial selection, sieving, filtering, linear algebra and square root computation. The 
polynomial selection stage requires the selection of coprime irreducible polynomials 
f1, f2 ∈ Z[x] that have a common root modulo N . After polynomial selection, sieving is 
used to identify coprime integer pairs (a, b) such that the prime factors of fi(a/b)bdeg fi

are below some bound yi for i = 1, 2. Obtaining sufficiently many pairs with this prop-
erty, called relations, is the most time consuming stage of the number field sieve, with 
the time taken greatly influenced by the choice of polynomials [24,25].

Let Ψ(x, y) denote the number of positive integers less than x that are free of prime 
factors greater than y. Canfield, Erdős and Pomerance [6] showed that for any ε > 0, 
Ψ(x, x1/u) = xu−u(1+o(1)) for u → ∞, uniformly in the region x ≥ uu(1+ε). It follows, 
heuristically, that in the polynomial selection stage of the number field sieve, the poly-
nomials f1 and f2 should be chosen to minimise the size of the values f1(a/b)bdeg f1 and 
f2(a/b)bdeg f2 over the pairs (a, b) considered in the sieve stage. Thus, it is necessary for 
the polynomials to have small coefficients. As a result, the degrees of f1 and f2 should 
not be too small. However, the degrees should not be too large either, since fi(a/b)bdeg fi

is a homogeneous polynomial of degree deg fi in a and b. In practice, low-degree poly-
nomials are used. For example, the two largest factorisations of RSA moduli [17,4] both 
used a sextic polynomial together with a linear polynomial. To quantify the coefficient 
size of a polynomial, the skewed 2-norm ‖.‖2,s is used. The norm is defined as follows: if 
f =

∑d
i=0 aix

i is a degree d polynomial with real coefficients, then

‖f‖2,s =

√√√√ d∑
i=0

(
aisi−d/2

)2 for all s > 0.

The parameter s captures the shape of the sieve region, which is modelled by a rectan-
gular region [−A, A] × (0, B] or an elliptic region{

(x, y) ∈ R
2 | 0 < y ≤ B

√
1 − (x/A)2

}
such that A/B = s. In practice, the polynomial selection stage proceeds by first gen-
erating many “raw” polynomial pairs with small coefficients. Then various methods of 
optimisation [25,3,2] are used to improve the quality of the raw pairs by taking into 
account additional factors that influence a pair’s yield of relations, such as the presence 
of real roots and roots modulo small primes [24,25].

The methods of polynomial selection used in all recent record factorisations [24,25,
15,16] produce polynomials f1 and f2 such that one polynomial is linear. However, it is 
expected that a significant advantage is gained by using two nonlinear polynomials [9, 
Section 6.2.7] (see also [27, Section 4] for practical considerations relating to sieving). 
Montgomery [22,23] provided a method for generating two nonlinear polynomials with 
small coefficients. This paper extends and sharpens Montgomery’s original analysis of 
the method.
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