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In this paper we revisit the Kalman–Yakubovich–Popov 
lemma for differential-algebraic control systems. This lemma 
relates the positive semi-definiteness of the Popov function on 
the imaginary axis to the solvability of a linear matrix inequal-
ity on a certain subspace. Further emphasis is placed on the 
Lur’e equation, whose solution set consists, loosely speaking, 
of the rank-minimizing solutions of the Kalman–Yakubovich–
Popov inequality. We show that there is a correspondence 
between the solution set of the Lur’e equation and the de-
flating subspaces of certain even matrix pencils. Finally, we 
show that under certain conditions the Lur’e equation admits 
stabilizing, anti-stabilizing, and extremal solutions. We note 
that, for our results, we neither assume impulse controllability 
nor make any assumptions on the index of the system.
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1. Introduction

In this work we consider differential-algebraic control systems (or descriptor systems) 
of the form

Eẋ(t) = Ax(t) + Bu(t), (1.1)

where E, A ∈ K
n×n such that the pencil sE − A ∈ K[s]n×n is regular (see Defini-

tion 2.1 (a)) and B ∈ K
n×m (for the notation of this article we refer to the end of this 

introductory section). The set of these systems is denoted by Σn,m(K) and we write 
[E, A, B] ∈ Σn,m(K). The function u : R → K

m is called input of the system; we call 
x(t) ∈ K

n the (generalized) state of [E, A, B] at time t ∈ R. The set of solution trajecto-
ries (x, u) : R → K

n ×K
m induces the behavior of (1.1):

B[E,A,B] :=
{
(x, u) ∈ L2

loc(R,Kn) × L2
loc(R,Km) : Eẋ ∈ L2

loc(R,Kn)

and (x, u) solves (1.1) for almost all t ∈ R
}
.

The main algebraic concept for our considerations is the Popov function, which is de-
fined by

Φ(s) =
[

(−sE −A)−1B

Im

]∗ [
Q S

S∗ R

] [
(sE −A)−1B

Im

]
∈ K(s)m×m,

where Q = Q∗ ∈ K
n×n, S ∈ K

n×m, and R = R∗ ∈ K
m×m are given matrices. Note 

that Φ(iω) is Hermitian for all ω ∈ R with det(iωE − A) �= 0. In particular, we are 
going to study algebraic conditions for the pointwise positive semi-definiteness of Φ(i · ) :
{ω ∈ R : det(iωE −A) �= 0} → C

m×m. This property is strongly related to the feasibility 
of the linear-quadratic optimal control problem in which the cost functional is formed 

by the matrix 
[

Q S

S∗ R

]
, see, e.g., [46].

In the case of ordinary differential equations (that is, E = In), the pointwise positive 
semi-definiteness of Φ(i·) can be assessed by the famous Kalman–Yakubovich–Popov 
lemma, see, e.g., [1,22,37,38,49] and the references therein. More precisely, under certain 
assumptions related to controllability, this property is equivalent to the solvability of 
the Kalman–Yakubovich–Popov (KYP) inequality, namely there exists a P ∈ K

n×n

such that [
A∗P + PA + Q PB + S

B∗P + S∗ R

]
≥ 0, P = P ∗. (1.2)

There are several attempts to generalize this lemma to differential-algebraic equations: 
For instance, in [33], the case where sE−A is regular and of index at most one has been 
treated. In [8,9,48] the KYP inequality has been considered for the even more general 
class of linear time-invariant behaviors. In these articles, behavioral controllability has 
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