

An optimization problem concerning multiplicative functions

Titus Hilberdink

Department of Mathematics, University of Reading, Whiteknights, PO Box 220, Reading RG6 6AX, UK

ARTICLE INFO

Article history: Received 26 May 2015 Accepted 14 July 2015 Available online 10 August 2015 Submitted by R. Brualdi

MSC: 11A05 11C20 11N99 15A36

Keywords: Optimization problem Multiplicative functions

ABSTRACT

In this paper we study the problem of maximizing a quadratic form $\langle Ax, x \rangle$ subject to $||x||_q = 1$, where A has matrix entries $f(\frac{[i,j]}{(i,j)})$ with i,j|k and $q \ge 1$. We investigate when the optimum is achieved at a 'multiplicative' point; i.e. where $x_1x_{mn} = x_mx_n$. This turns out to depend on both f and q, with a marked difference appearing as q varies between 1 and 2. We prove some partial results and conjecture that for f multiplicative such that 0 < f(p) < 1, the solution is at a multiplicative point for all $q \ge 1$.

@ 2015 Elsevier Inc. All rights reserved.

1. Introduction

In optimization problems involving multiplicative structure, there is a tendency for multiplicative functions to play a crucial role. This can appear in various ways; the optimum may itself be multiplicative, or the point where the optimum occurs may be multiplicative.

E-mail address: t.w.hilberdink@reading.ac.uk.

 $[\]label{eq:http://dx.doi.org/10.1016/j.laa.2015.07.005} 0024-3795 @ 2015 Elsevier Inc. All rights reserved.$

For instance in [3], Codecá and Nair considered (amongst others) the problem of minimizing a quadratic form $\langle Bx, x \rangle$ subject to $||x||_2 = 1$ where B is the $d(k) \times d(k)$ matrix with entries $\frac{h((i,j))}{ij}$ where i, j|k, (i,j) is the gcd of i and j, and k is squarefree. They proved that any real multiplicative function f with 0 < f(p) < 1 (for primes p|k) can be realised as such as minimum. Further, they explicitly determined this minimum when h is multiplicative and of the form h = 1 * g, with $g \ge 0$.

Another example comes from [7], where Perelli and Zannier considered the problem of minimizing $\langle Ax, x \rangle$ subject to $\|x\|_2 = 1$ where A is the $d(k) \times d(k)$ matrix (again with k squarefree) with entries $f(\frac{[i,j]}{(i,j)})$ (here i, j | k and [i, j] is the lcm of i and j) in the special case that $f(n) = \frac{1}{4} + \frac{1}{12n}$. They show that the minimum is $\frac{\varphi(k)}{12k}$ and that this is achieved at the point $x_d = \frac{\mu(d)}{\sqrt{d(k)}}$.

In [6], it was noted that the operation $c \circ d = \frac{[c,d]}{(c,d)}$ is a group operation on $D(k) = \{d:d|k\}$ if k is squarefree and, as an application of this algebraic structure, the problem of maximizing $\langle A_f x, x \rangle$ was considered, where $A_f = (f(c \circ d))_{c,d|k}$ but now subject to $\|x\|_q = 1$ with $q \geq 2$. It was found that for any $f: D(k) \to (0, \infty)$, the optimum is

$$d(k)^{1-\frac{2}{q}}\sum_{d|k}f(d),$$

and that it occurs at x_d constant. Notice that in both of the above examples, $\frac{x_d}{x_1}$ is multiplicative at the optimum, even if f is not. In the latter, the optimum itself is also multiplicative precisely when f is. Also in [3], the optimum can be shown to occur at multiplicative $\frac{x_d}{x_1}$.

In this paper we consider the above optimization problem for the range 1 < q < 2, which turns out to be highly non-trivial. This has its origin in a problem concerning gcd sums. Briefly, one wishes to maximize the sum

$$F_{\alpha}(S) = \sum_{m,n \in S} \frac{1}{(m \circ n)^{\alpha}}$$

over all sets S of size N (see [5] for the case $\alpha = 1$ and [4] and [1] for other values of $\alpha > 0$). For $\alpha \ge \frac{1}{2}$, good bounds for this maximum have been established (sharp for $\alpha = 1$ [5] and close to best possible for $\frac{1}{2} \le \alpha < 1$ see [1,2]), but for $0 < \alpha < \frac{1}{2}$ little is as yet known, except for rather crude upper and lower bounds. Thus it is known that in this range

$$N^{2-2\alpha} \ll \max_{|S|=N} F_{\alpha}(S) \ll N^{2-2\alpha} \exp\left\{c\alpha \sqrt{\frac{\log N \log \log \log N}{\log \log N}}\right\}$$

for some absolute constant c (see [2]), but the true order is far from settled. In work in progress, a new lower bound $N^{2-2\alpha}(\log \log N)^{2\alpha}$ can be established which may also turn out to be the correct order of magnitude. This hinges (in part) on maximizing $\langle A_f x, x \rangle$

Download English Version:

https://daneshyari.com/en/article/4598907

Download Persian Version:

https://daneshyari.com/article/4598907

Daneshyari.com