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1. Introduction

In this paper we are interested in describing the invariant factors of the product of two
matrices over the most general class of integral domains for which the question makes
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sense. The problem has been completely solved for matrices over principal ideal domains
(PIDs) and we begin in that setting. There is no loss of generality in restricting our
study to square nonsingular matrices [14].

Let R be a PID and A an n x n nonsingular matrix over R. It is well known that
A is equivalent to its Smith normal form, that is, there exist U and V unimodular (i.e.
invertible over R) such that

an 0 0
0 Ap—1 0
UAV - . )
0 0 ay
where ay, | ap—1 | -+ | a1 are the invariant factors of A.

The invariant factors are uniquely determined by A, as follows from the characteriza-
tion

di(A)

_ =— k=1
Ap—k+1 dkfl(A) )

geeey

where, for each k, di(A), the so-called kth determinantal divisor of A, is the ged of all
k x k minors of A, dy = 1. (This definition can of course be presented also for non-square
matrices.) By the Cauchy—Binet theorem for determinants, the dj, are invariant under
equivalence. That dj_1(A) divides d(A) follows from Laplace’s theorem.

The problem we are interested in is the following: What are the possible invariant
factors ¢, | -+ | ¢1 of a product AB, if A and B are n X n nonsingular matrices over R
with invariant factors a, | --- | a1 and by, | - - - | b, respectively?

For matrices over a PID, this problem has been solved with a variety of approaches,
starting with its p-module version in [10], where p is a prime in R. Indeed, all approaches
start by localizing the problem at an arbitrary prime p, working in that context, and
then recovering the global solution.

To describe the solution in [10] we need some notation. For each fixed prime p € R, we
restrict our attention to matrices over the local ring R, that is, we just work with powers
of pra; — p*i, by — pPi, ¢; = pYi, where oy > - >, f1 > - > By 1 >0 > T
are nonnegative integers.

Denote by IF(«,3) the set of possible v in the invariant factor product problem.
Introduce the notation A, = {a = (a1,...,a,) €Z" : aq > -+ > a, > 0}. What was
proved in [10] was that IF(a, 8) = LR(«, ), where the latter is the set of v € A,, which
can be obtained from o and 8 using the combinatorial Littlewood—Richardson rule (for
the description of the rule see e.g. [6]). Thus the invariant factor product problem, in its
local “primary” version, has a complete and interesting solution, although not a clearly
explicit one, via the Littlewood—Richardson rule. In particular, this solution is not given
as a family of divisibility relations.
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