Proof of a conjectured lower bound on the chromatic number of a graph

Tsuyoshi Ando ${ }^{\text {a }}$, Minghua Lin ${ }^{\text {b,c,* }}$
${ }^{\text {a }}$ Hokkaido University (Emeritus), Sapporo, Japan
b Department of Mathematics, Shanghai University, Shanghai 200444, China
${ }^{\text {c }}$ Department of Mathematics and Statistics, University of Victoria, Victoria, BC, V8W 3R4, Canada

A R T I C L E I N F O

Article history:

Received 26 May 2015
Accepted 7 August 2015
Available online 24 August 2015
Submitted by R. Brualdi

MSC:

05C50
15A45
Keywords:
Chromatic number
Lower bound

A B S TRACT

We confirm a conjecture in Wocjan and Elphick (2013) [4] about a lower bound of the chromatic number of a graph.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this note, we let G be a simple graph with $n \geq 1$ vertices and let A_{G} be its adjacency matrix. The chromatic number $\chi(G)$ of the graph G is the smallest number of colors needed to color the vertices of G so that no two adjacent vertices share the same color, i.e., the smallest value of r possible to obtain a r-coloring.

[^0]Obviously, if $r=\chi(G)$, then the vertices of G can be numbered in such a way that A_{G} is partitioned into $r \times r$ blocks $A_{G}=\left[A_{i j}\right]_{i, j=1}^{r}$ with $A_{11}, \ldots, A_{r r}$ being zero matrices. Though the diagonal blocks of A_{G} may be of different size, they are required to be square matrices.

The adjacency matrix A_{G} is real symmetric, so the eigenvalues of A_{G} are real numbers, which we denote by μ_{1}, \ldots, μ_{n}, sorted in non-increasing order. The Hoffman lower bound on the chromatic number is a classical result in spectral graph theory

$$
\chi(G) \geq 1+\frac{\mu_{1}}{-\mu_{n}}
$$

Over the years, there has been many studies on finding reasonable lower bounds of $\chi(G)$; see, e.g., $[2-4]$ and references therein.

Let the inertia of A_{G} be (π, ν, δ), where π, ν and δ are the numbers (counting multiplicities) of positive, negative and zero eigenvalues of A_{G} respectively. Let

$$
s^{+}=\mu_{1}^{2}+\cdots+\mu_{\pi}^{2}
$$

and

$$
s^{-}=\mu_{n-\nu+1}^{2}+\cdots+\mu_{n}^{2} .
$$

In [4], the following conjecture was made

Conjecture 1.1. Let s^{+}, s^{-}be defined as above. Then

$$
\chi(G) \geq 1+\frac{s^{+}}{s^{-}}
$$

Although the conjecture has been confirmed for various graph families [4], a complete solution seems not known. The purpose of this note is to provide a complete solution. The main techniques used in this note are from matrix analysis [1], so it is an evidence of fruitful interplay between combinatorics and linear algebra.

2. Main result

In the sequel, the norm we consider is the Frobenius norm. That is, for a complex matrix $X,\|X\|=\sqrt{\operatorname{tr} X^{\dagger} X}$, where X^{\dagger} means the conjugate transpose of X and tr means the trace. It is clear that if X is Hermitian, then $\|X\|^{2}$ is equal to the sum of the squares of all the eigenvalues of X. For a block matrix, the diagonal blocks are always assumed to be square.

We need the following simple lemma.

https://daneshyari.com/en/article/4598917

Download Persian Version:
https://daneshyari.com/article/4598917

Daneshyari.com

[^0]: * Corresponding author at: Department of Mathematics, Shanghai University, Shanghai 200444, China. E-mail addresses: ando@es.hokudai.ac.jp (T. Ando), mlin87@ymail.com (M. Lin).

