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We confirm a conjecture in Wocjan and Elphick (2013) [4]
about a lower bound of the chromatic number of a graph.
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1. Introduction

In this note, we let G be a simple graph with n ≥ 1 vertices and let AG be its 
adjacency matrix. The chromatic number χ(G) of the graph G is the smallest number of 
colors needed to color the vertices of G so that no two adjacent vertices share the same 
color, i.e., the smallest value of r possible to obtain a r-coloring.
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Obviously, if r = χ(G), then the vertices of G can be numbered in such a way that AG

is partitioned into r × r blocks AG = [Aij ]ri,j=1 with A11, . . . , Arr being zero matrices. 
Though the diagonal blocks of AG may be of different size, they are required to be square 
matrices.

The adjacency matrix AG is real symmetric, so the eigenvalues of AG are real numbers, 
which we denote by μ1, . . . , μn, sorted in non-increasing order. The Hoffman lower bound 
on the chromatic number is a classical result in spectral graph theory

χ(G) ≥ 1 + μ1

−μn
.

Over the years, there has been many studies on finding reasonable lower bounds of χ(G); 
see, e.g., [2–4] and references therein.

Let the inertia of AG be (π, ν, δ), where π, ν and δ are the numbers (counting multi-
plicities) of positive, negative and zero eigenvalues of AG respectively. Let

s+ = μ2
1 + · · · + μ2

π,

and

s− = μ2
n−ν+1 + · · · + μ2

n.

In [4], the following conjecture was made

Conjecture 1.1. Let s+, s− be defined as above. Then

χ(G) ≥ 1 + s+

s−
.

Although the conjecture has been confirmed for various graph families [4], a complete 
solution seems not known. The purpose of this note is to provide a complete solution. 
The main techniques used in this note are from matrix analysis [1], so it is an evidence 
of fruitful interplay between combinatorics and linear algebra.

2. Main result

In the sequel, the norm we consider is the Frobenius norm. That is, for a complex 
matrix X, ‖X‖ =

√
trX†X, where X† means the conjugate transpose of X and tr means 

the trace. It is clear that if X is Hermitian, then ‖X‖2 is equal to the sum of the squares 
of all the eigenvalues of X. For a block matrix, the diagonal blocks are always assumed 
to be square.

We need the following simple lemma.
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