Minimum (maximum) rank of sign pattern tensors and sign nonsingular tensors

Changjiang Bu ${ }^{\mathrm{a}, \mathrm{b}, *}$, Wenzhe Wang ${ }^{\mathrm{a}}$, Lizhu Sun ${ }^{\mathrm{c}}$, Jiang Zhou ${ }^{\mathrm{a}, \mathrm{d}}$
${ }^{\text {a }}$ College of Science, Harbin Engineering University, Harbin 150001, PR China
${ }^{\text {b }}$ College of Automation, Harbin Engineering University, Harbin 150001, PR China
${ }^{\text {c }}$ School of Science, Harbin Institute of Technology, Harbin 150001, PR China
${ }^{\text {d }}$ College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, PR China

A R T I C L E I N F O

Article history:

Received 13 December 2014
Accepted 25 May 2015
Available online 8 June 2015
Submitted by J.y. Shao

MSC:

15A69
15B35

Keywords:

Tensor
Minimum rank
Maximum rank
Sign nonsingular tensor

Abstract

In this paper, we define the sign pattern tenors, minimum (maximum) rank of sign pattern tenors, term rank of tensors and sign nonsingular tensors. The necessity and sufficiency for the minimum rank of sign pattern tenors to be 1 is given. We show that the maximum rank of a sign pattern tensor is not less than the term rank and the minimum rank of the sign pattern of a sign nonsingular tensor is not less than its dimension. We get some characterizations of tensors having sign left or sign right inverses.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

For a positive integer n, let $[n]=\{1, \ldots, n\}$. Let $\mathbb{R}^{n_{1} \times \cdots \times n_{k}}$ be the set of the k-order tensors over real field. A k-order tensor $\mathcal{A}=\left(a_{i_{1} \cdots i_{k}}\right) \in \mathbb{R}^{n_{1} \times \cdots \times n_{k}}$ is a multidimensional

[^0]array with $n_{1} \times n_{2} \times \cdots \times n_{k}$ entries. When $k=2, \mathcal{A}$ is an $n_{1} \times n_{2}$ matrix. If $n_{1}=\cdots=$ $n_{k}=n$, then \mathcal{A} is called a k-order n-dimension tensor. The k-order n-dimension tensor $\mathcal{I}=\left(\delta_{i_{1} \cdots i_{k}}\right)$ is called a unit tensor, where $\delta_{i_{1} \cdots i_{k}}=1$ if $i_{1}=\cdots=i_{k}$, and $\delta_{i_{1} \cdots i_{k}}=0$ otherwise. There are some results on the research of tensors in [1-3].

For the nonzero vector $\alpha_{j} \in \mathbb{R}^{n_{j}}(j=1, \ldots, k)$, let $\left(\alpha_{j}\right)_{i}$ be the i-th component of α_{j}. The Segre outer product of $\alpha_{1}, \ldots, \alpha_{k}$, denoted by $\alpha_{1} \otimes \cdots \otimes \alpha_{k}$, is called the rank-one tensor $\mathcal{A}=\left(a_{i_{1} \cdots i_{k}}\right)$ with entries $a_{i_{1} \cdots i_{k}}=\left(\alpha_{1}\right)_{i_{1}} \cdots\left(\alpha_{k}\right)_{i_{k}}$ (see [4]). The rank of a tensor $\mathcal{A} \in \mathbb{R}^{n_{1} \times \cdots \times n_{k}}$, denoted by $\operatorname{rank}(\mathcal{A})$, is the smallest r such that \mathcal{A} can be written as a sum of r rank-one tensors as follows:

$$
\begin{equation*}
\mathcal{A}=\sum_{j=1}^{r} \alpha_{1}^{j} \otimes \cdots \otimes \alpha_{k}^{j} \tag{1.1}
\end{equation*}
$$

where $\alpha_{i}^{j} \neq 0$ and $\alpha_{i}^{j} \in \mathbb{R}^{n_{i}}, i=1, \ldots, k, j=1, \ldots, r$ (see $[1,4]$).
For the vector $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\mathrm{T}}$ and a k-order n-dimension tensor $\mathcal{A}, \mathcal{A} x^{k-1}$ is an n-dimension vector whose i-th component is

$$
\left(\mathcal{A} x^{k-1}\right)_{i}=\sum_{i_{2}, \ldots, i_{k} \in[n]} a_{i i_{2} \cdots i_{k}} x_{i_{2}} x_{i_{3}} \cdots x_{i_{k}}
$$

where $i \in[n]$ (see [2]).
In [5] Shao defines the general tensor product. For n-dimension tensors $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right)$ and $\mathcal{B}=\left(b_{i_{1} \cdots i_{k}}\right)(m \geq 2, k \geq 1)$, their product is an $(m-1)(k-1)+1$-order tensor with entry

$$
(\mathcal{A} \cdot \mathcal{B})_{i \alpha_{1} \cdots \alpha_{m-1}}=\sum_{i_{2}, \ldots, i_{m} \in[n]} a_{i i_{2} \cdots i_{m}} b_{i_{2} \alpha_{1}} \cdots b_{i_{m} \alpha_{m-1}}
$$

where $i \in[n], \alpha_{1}, \ldots, \alpha_{m-1} \in[n]^{k-1}$. And if $\mathcal{A} \cdot \mathcal{B}=\mathcal{I}$, then \mathcal{A} is called an m-order left inverse of \mathcal{B} and \mathcal{B} is called a k-order right inverse of \mathcal{A} (see [6]). The determinant of a k-order n-dimension tensor \mathcal{A}, denoted by $\operatorname{det}(\mathcal{A})$, is the resultant of the system of homogeneous equation $\mathcal{A} x^{k-1}=0$, where $x \in \mathbb{R}^{n}$ (see [3]). In [2] Qi researches the determinant of symmetric tensors. In [5] Shao proves that $\operatorname{det}(\mathcal{A})$ is the unique polynomial on the entries of \mathcal{A} satisfying the following three conditions:
(1) $\operatorname{det}(\mathcal{A})=0$ if and only if the system of homogeneous equation $\mathcal{A} x^{k-1}=0$ has a nonzero solution;
(2) $\operatorname{det}(\mathcal{I})=1$;
(3) $\operatorname{det}(\mathcal{A})$ is an irreducible polynomial on the entries of \mathcal{A} when the entries $a_{i_{1} \cdots i_{k}}$ $\left(i_{1}, \ldots, i_{k} \in[n]\right)$ of \mathcal{A} are all viewed as independent different variables. If $\operatorname{det}(\mathcal{A}) \neq 0$, then \mathcal{A} is called a nonsingular tensor.

https://daneshyari.com/en/article/4598930

Download Persian Version:
https://daneshyari.com/article/4598930

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: buchangjiang@hrbeu.edu.cn (C. Bu).

