

Contents lists available at ScienceDirect

## Linear Algebra and its Applications



www.elsevier.com/locate/laa

# Discrete norms of a matrix and the converse to the expander mixing lemma



Vsevolod F. Lev

Department of Mathematics, The University of Haifa at Oranim, Tivon 36006, Israel

#### ARTICLE INFO

Article history: Received 22 October 2014 Accepted 30 May 2015 Available online 10 June 2015 Submitted by R. Brualdi

 $\begin{array}{l} MSC: \\ \text{primary } 05\text{C}50 \\ \text{secondary } 15\text{A}18, \, 15\text{A}60 \end{array}$ 

Keywords:
Matrix norms
Graph eigenvalues
Second singular value

#### ABSTRACT

We define the discrete norm of a complex  $m \times n$  matrix A by

$$||A||_{\Delta} := \max_{0 \neq \xi \in \{0,1\}^n} \frac{||A\xi||}{||\xi||},$$

and show that

$$\frac{c}{\sqrt{\log h(A) + 1}} \|A\| \le \|A\|_{\Delta} \le \|A\|,$$

where c>0 is an explicitly indicated absolute constant,  $h(A)=\sqrt{\|A\|_1\|A\|_\infty}/\|A\|$ , and  $\|A\|_1$ ,  $\|A\|_\infty$ , and  $\|A\|=\|A\|_2$  are the induced operator norms of A. Similarly, for the discrete Rayleigh norm

$$||A||_P := \max_{\substack{0 \neq \xi \in \{0,1\}^m \\ 0 \neq \eta \in \{0,1\}^n}} \frac{|\xi^t A \eta|}{||\xi|| ||\eta||}$$

we prove the estimate

$$\frac{c}{\log h(A) + 1} \|A\| \le \|A\|_P \le \|A\|.$$

These estimates are shown to be essentially best possible. As a consequence, we obtain another proof of the (slightly sharpened and generalized version of the) converse to the

E-mail address: seva@math.haifa.ac.il.

expander mixing lemma by Bollobás–Nikiforov and Bilu–Linial.

© 2015 Elsevier Inc. All rights reserved.

#### 1. Summary of results

For a complex matrix A with n columns, we define the discrete norm of A by

$$||A||_{\Delta} := \max_{0 \neq \xi \in \{0,1\}^n} \frac{||A\xi||}{||\xi||},$$

where the maximum is over all non-zero n-dimensional binary vectors  $\xi$ , and  $\|\cdot\|$  denotes the usual Euclidean vector norm. Recalling the standard definition of the induced operator  $L^2$ -norm

$$||A|| := \sup_{0 \neq x \in \mathbb{C}^n} \frac{||Ax||}{||x||},$$

we see immediately that  $||A||_{\Delta} \leq ||A||$ , and one can expect that, moreover, the two norms are not far from each other.

#### 1.1. Norm estimates

Our first goal is to establish a result along the lines just indicated; to state it, we introduce the notion of a *height* of a matrix.

For  $p \in [1, \infty]$ , let  $||A||_p$  denote the induced operator  $L^p$ -norm of the matrix A:

$$||A||_p := \sup_{0 \neq x \in \mathbb{C}^n} \frac{||Ax||_p}{||x||_p},$$

where n is the number of columns of A. We are actually interested in the following three special cases: the *column norm*  $||A||_1$ , which can be equivalently defined as the largest absolute column sum of A; the row norm  $||A||_{\infty}$ , which is the largest absolute row sum of A; and the Euclidean norm  $||A||_2$ , commonly denoted simply by ||A||. These three norms are known to be related by the inequality

$$||A||^2 \le ||A||_1 ||A||_{\infty},\tag{1}$$

which can be obtained as a particular case of the Riesz-Thorin theorem, or proved directly, using basic properties of matrix norms (in particular, sub-multiplicativity of the  $L^1$ -norm):

$$||A||^2 = ||A^*A|| \le ||A^*A||_1 \le ||A^*||_1 ||A||_1 = ||A||_{\infty} ||A||_1.$$

### Download English Version:

# https://daneshyari.com/en/article/4598934

Download Persian Version:

https://daneshyari.com/article/4598934

Daneshyari.com