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We define the discrete norm of a complex m X n matrix A by

A
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and show that

Cc
. —
= 1Al S lAlla < 4]

where ¢ > 0 is an explicitly indicated absolute constant,

h(A) = VIA[LllAllo /I All, and ||All1, [[Allec, and [|A]] =
[[A]]2 are the induced operator norms of A. Similarly, for the
discrete Rayleigh norm
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we prove the estimate
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These estimates are shown to be essentially best possible.
As a consequence, we obtain another proof of the (slightly
sharpened and generalized version of the) converse to the
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expander mixing lemma by Bollobas—Nikiforov and Bilu—
Linial.
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1. Summary of results

For a complex matrix A with n columns, we define the discrete norm of A by

A
IAlla =  max 1A<)
oz¢efo, 1} [|€]]
where the maximum is over all non-zero n-dimensional binary vectors &, and || - || de-

notes the usual Euclidean vector norm. Recalling the standard definition of the induced
operator L?-norm
| Az|]
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we see immediately that || A||a < || 4[|, and one can expect that, moreover, the two norms
are not far from each other.

1.1. Norm estimates
Our first goal is to establish a result along the lines just indicated; to state it, we in-

troduce the notion of a height of a matrix.
For p € [1,00], let ||Al|, denote the induced operator LP-norm of the matrix A:

Ax
JAl, = sup 1AZle
0#£zeCn Hxllp

where n is the number of columns of A. We are actually interested in the following three
special cases: the column norm ||All1, which can be equivalently defined as the largest
absolute column sum of A; the row norm ||Al|so, which is the largest absolute row sum
of A; and the Euclidean norm ||A||2, commonly denoted simply by ||A||. These three
norms are known to be related by the inequality

2

A" < 1Al Alloe, (1)
which can be obtained as a particular case of the Riesz—Thorin theorem, or proved
directly, using basic properties of matrix norms (in particular, sub-multiplicativity of

the L'-norm):
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