Half turns in characteristic 2

Erich W. Ellers ${ }^{\text {a }}$, Oliver Villa ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, University of Toronto, 40 St. George Street, Toronto, Ontario M5S 2E4, Canada
${ }^{\mathrm{b}}$ SUPSI, University of Applied Sciences and Arts of Southern Switzerland, CH-6928 Manno, Switzerland

A R T I C L E I N F O

Article history:

Received 23 April 2015
Accepted 1 June 2015
Available online 12 June 2015
Submitted by R. Brualdi

$M S C$:

15A23
20H20
51F25
51N30

Keywords:

Factorization
Half turn
Quadratic form
Singular vector

A B S T R A C T

Let V be a nonsingular quadratic space over a field K of characteristic 2 . We show that if $n>4$, then every element π in the special orthogonal group $\mathrm{SO}(V)$ is a product of an even number of half turns. If $\operatorname{dim} B(\pi)=2 k$, then the length of π with respect to the half turns is $k, k+1$ or $k+2$.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let V be an n-dimensional vector space over a field K and let $q: V \longrightarrow K$ be a quadratic form. An element of the orthogonal group $\mathrm{O}(V)$ is called half turn if it is a product of two distinct commuting reflections. If the characteristic of K is distinct

[^0]from 2 and $n \geq 3$, Artin discovered that every element in the special orthogonal group $\mathrm{SO}(V)$ is a product of n or fewer half turns (see [1, Thm. 3.22]). The minimal number of half turns needed to write an element of the special orthogonal group as product of half turns was determined by Ishibashi (see [5]) for regular spaces and in general by Ellers (see [2]). It remains to study the case of characteristic 2. Half turns are related to Siegel transformations, which were studied for some fields of characteristic 2 in [3]. Here we consider fields of characteristic 2 with only one restriction: we exclude the case in which $\operatorname{dim} V=4, \operatorname{ind} V=2$, and K has only two elements; in this case the orthogonal group is not generated by reflections. We show that also in characteristic 2 , if $n \geq 4$, every element of $\mathrm{SO}(V)\left(\mathrm{SO}(V) \neq \mathrm{O}^{+}(4,2)\right)$ is a product of an even number of half turns (see Theorem 3.3). We also show that if $\pi \in \operatorname{SO}(V)$ such that $\operatorname{dim} B(\pi)=2 k$ and $n \geq 6$, then π is a product of k or $k+1$ or $k+2$ half turns (see Theorem 3.12).

2. Notation

Let V be a vector space of dimension n over a field K of characteristic 2 . Let q : $V \longrightarrow K$ be a quadratic form and $b_{q}: V \times V \longrightarrow K$ the symmetric bilinear form defined by $b_{q}(x, y):=q(x+y)-q(x)-q(y)$ for $x, y \in V$. We assume that the bilinear form b_{q} is nondegenerate (alias nonsingular), i.e. $b_{q}(x, y)=0$ for all $y \in V$ implies $x=0$. The dimension of V is even because the bilinear form b_{q} is alternating, i.e. $b_{q}(x, x)=0$ for all $x \in V$. Two vectors $v, w \in V$ are called perpendicular, $v \perp w$, if and only if $b_{q}(v, w)=0$. A vector $v \in V$ is called isotropic if $b_{q}(v, v)=0$ and singular if $q(v)=0$. Of course in characteristic 2 every vector is isotropic. Let W be a subspace of V. Then W is called totally isotropic if $b_{q}(u, w)=0$ for all $u, w \in W$ and totally singular if $q(w)=0$ for all $w \in W$. A totally singular subspace is also totally isotropic, but the converse is not necessarily true. Since b_{q} is nondegenerate, the dimension of any totally singular (resp. totally isotropic) subspace of V is less than or equal to $n / 2$. The common dimension of the maximal totally singular subspaces of V is called the index of V and is denoted by ind V. The orthogonal complement of W is defined by $W^{\perp}:=\left\{x \in V \mid b_{q}(x, w)=0\right.$ for all $w \in W\}$. The subspaces $\operatorname{rad} W=W \cap W^{\perp}$ and $S W=\{x \in \operatorname{rad} W \mid q(x)=0\}$ are called the radical of W and the singular of W, respectively. The space W is said to be nonsingular if $\operatorname{rad} W=0$. Let $\mathrm{GL}(V)$ be the general linear group of V. The orthogonal group with respect to q is defined by

$$
\mathrm{O}(V):=\{\pi \in \mathrm{GL}(V) \mid q(\pi(x))=q(x) \quad \text { for all } \quad x \in V\} .
$$

The residual space or path $B(\pi)$ of an element π in $\mathrm{O}(V)$ is the space

$$
B(\pi):=\{\pi(x)-x \mid x \in V\}
$$

For every element $\pi \in \mathrm{O}(V)$, we define the fix $F(\pi)=\{x \in V \mid \pi(x)=x\}$. Clearly, $B(\pi)^{\perp}=F(\pi)$ and $n=\operatorname{dim} B(\pi)+\operatorname{dim} F(\pi)$ for every transformation $\pi \in \mathrm{O}(V)$.

https://daneshyari.com/en/article/4598937

Download Persian Version:

https://daneshyari.com/article/4598937

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: ellers@math.toronto.edu (E.W. Ellers), oliver.villa@supsi.ch (O. Villa).

