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The present paper is devoted to the study of linear maps 
preserving certain relations, such as the sharp partial order 
and the star partial order in semisimple Banach algebras and 
C∗-algebras.
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1. Introduction and background

Let A be a Banach algebra. Recall that an element a ∈ A is regular if there is b ∈ A

such that aba = a. For a regular element a ∈ A, the set

a{1} = {x ∈ A: axa = a}

consists of all {1}-inverses or inner inverses of a. Notice that if x is a {1}-inverse 
of a, then ax and xa are idempotents. A {1, 2}-inverse or generalized inverse of a, is 
a {1}-inverse of a that is a solution of the equation xax = x, that is, it is an element 
b ∈ A such that aba = a and bab = b.

Note that the condition x ∈ a{1} ensures the existence of a generalized inverse of a: 
in such case, b = xax fulfills the previous identities.

For an element a in A, let us consider the left and right multiplication operators 
La : x �→ ax and Ra : x �→ xa, respectively. If a is regular, then so are La and Ra, and 
thus their ranges aA = La(A) and Aa = Ra(A) are both closed. The unique generalized 
inverse of a that commutes with a is called the group inverse of a, whenever it exists. In 
this case a is said to be group invertible and its group inverse is denoted by a�. The set 
of all group invertible elements of A is denoted by A�.

Even though regularity can be defined in general Banach algebras, this notion has 
been mostly studied in C*-algebras. Harte and Mbekhta proved in [20] that an element 
a in a unital C*-algebra A is regular if and only if aA is closed. Given a and b in a 
C∗-algebra A, we shall say that b is a Moore–Penrose inverse of a if b is a generalized 
inverse of a and ab and ba are selfadjoint. It is known that every regular element a in 
A has a unique Moore–Penrose inverse that will be denoted by a† [20]. We write A† for 
the set of regular elements in the C*-algebra A.

Let Mn(C) be the algebra of all n × n complex matrices. On Mn(C) there are many 
partial orders, which have been well studied (see [17,21,22,28–30]). The star partial order
on Mn(C) was introduced by Drazin in [17], as follows:

A ≤∗ B if and only if A∗A = A∗B and AA∗ = BA∗,

where as usual A∗ denotes the conjugate transpose of A. It was proved that A ≤∗ B

if and only if A†A = A†B and AA† = BA†. Baksalary and Mitra introduced in [4] the 
left-star and right-star partial order on Mn(C), as

A∗ ≤ B if and only if A∗A = A∗B and ImA ⊆ ImB,

and

A ≤ ∗B if and only if AA∗ = BA∗ and ImA∗ ⊆ ImB∗,

respectively. Moreover, A ≤∗ B if and only if A∗ ≤ B and A ≤ ∗B.
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