On mappings preserving the sharp and star orders

M. Burgos ${ }^{\text {a }}$, A.C. Márquez-García ${ }^{\text {b }}$, P. Patrício ${ }^{\text {c,* }}$
${ }^{\text {a }}$ Campus de Jerez, Facultad de Ciencias Sociales y de la Comunicación, Av. de la Universidad s/n, 11405 Jerez, Cádiz, Spain
${ }^{\text {b }}$ Departamento Matemáticas, Universidad de Almería, 04120 Almería, Spain
${ }^{\text {c }}$ CMAT - Centro de Matemática छ Departamento de Matemática e Aplicações, Universidade do Minho, Braga, Portugal

A R T I C L E I N F O

Article history:

Received 6 August 2014
Accepted 4 May 2015
Available online 19 June 2015
Submitted by Y. Wei

$M S C$:

primary 47B48
secondary $47 \mathrm{C} 15,47 \mathrm{~B} 49,15 \mathrm{~A} 09$
Keywords:
Sharp order
Star order
Orthogonality
Zero product
Linear preserver
Banach algebra

A B S T R A C T

The present paper is devoted to the study of linear maps preserving certain relations, such as the sharp partial order and the star partial order in semisimple Banach algebras and C^{*}-algebras.
© 2015 Elsevier Inc. All rights reserved.

[^0]
1. Introduction and background

Let A be a Banach algebra. Recall that an element $a \in A$ is regular if there is $b \in A$ such that $a b a=a$. For a regular element $a \in A$, the set

$$
a\{1\}=\{x \in A: a x a=a\}
$$

consists of all $\{1\}$-inverses or inner inverses of a. Notice that if x is a $\{1\}$-inverse of a, then $a x$ and $x a$ are idempotents. A $\{1,2\}$-inverse or generalized inverse of a, is a $\{1\}$-inverse of a that is a solution of the equation $x a x=x$, that is, it is an element $b \in A$ such that $a b a=a$ and $b a b=b$.

Note that the condition $x \in a\{1\}$ ensures the existence of a generalized inverse of a : in such case, $b=x a x$ fulfills the previous identities.

For an element a in A, let us consider the left and right multiplication operators $L_{a}: x \mapsto a x$ and $R_{a}: x \mapsto x a$, respectively. If a is regular, then so are L_{a} and R_{a}, and thus their ranges $a A=L_{a}(A)$ and $A a=R_{a}(A)$ are both closed. The unique generalized inverse of a that commutes with a is called the group inverse of a, whenever it exists. In this case a is said to be group invertible and its group inverse is denoted by a^{\sharp}. The set of all group invertible elements of A is denoted by A^{\sharp}.

Even though regularity can be defined in general Banach algebras, this notion has been mostly studied in C*-algebras. Harte and Mbekhta proved in [20] that an element a in a unital C^{*}-algebra A is regular if and only if $a A$ is closed. Given a and b in a C^{*}-algebra A, we shall say that b is a Moore-Penrose inverse of a if b is a generalized inverse of a and $a b$ and $b a$ are selfadjoint. It is known that every regular element a in A has a unique Moore-Penrose inverse that will be denoted by $a^{\dagger}[20]$. We write A^{\dagger} for the set of regular elements in the C^{*}-algebra A.

Let $M_{n}(\mathbb{C})$ be the algebra of all $n \times n$ complex matrices. On $M_{n}(\mathbb{C})$ there are many partial orders, which have been well studied (see [17,21,22,28-30]). The star partial order on $M_{n}(\mathbb{C})$ was introduced by Drazin in [17], as follows:

$$
A \leq_{*} B \quad \text { if and only if } \quad A^{*} A=A^{*} B \text { and } A A^{*}=B A^{*}
$$

where as usual A^{*} denotes the conjugate transpose of A. It was proved that $A \leq_{*} B$ if and only if $A^{\dagger} A=A^{\dagger} B$ and $A A^{\dagger}=B A^{\dagger}$. Baksalary and Mitra introduced in [4] the left-star and right-star partial order on $M_{n}(\mathbb{C})$, as

$$
A * \leq B \quad \text { if and only if } \quad A^{*} A=A^{*} B \text { and } \quad \operatorname{Im} A \subseteq \operatorname{Im} B
$$

and

$$
A \leq * B \quad \text { if and only if } \quad A A^{*}=B A^{*} \text { and } \quad \operatorname{Im} A^{*} \subseteq \operatorname{Im} B^{*}
$$

respectively. Moreover, $A \leq_{*} B$ if and only if $A * \leq B$ and $A \leq * B$.

https://daneshyari.com/en/article/4598941

Download Persian Version:

https://daneshyari.com/article/4598941

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: maria.burgos@uca.es (M. Burgos), acmarquez@ual.es (A.C. Márquez-García), pedro@math.uminho.pt (P. Patrício).

