Some new considerations about double nested graphs

M. Anđelića ${ }^{\text {a,b,*,1 }}$, E. Andrade ${ }^{\text {a,1 }}$, D.M. Cardoso ${ }^{\text {a,1 }}$, C.M. da Fonseca ${ }^{\text {b }}$, S.K. Simićc ${ }^{\text {c,d,2 }}$, D.V. Tošić ${ }^{\text {e }}$
${ }^{\text {a }}$ Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal
${ }^{\text {b }}$ Department of Mathematics, Kuwait University, Safat 13060, Kuwait
${ }^{\text {c }}$ State University of Novi Pazar, Vuka Karadžića bb, 36300 Novi Pazar, Serbia
${ }^{d}$ Mathematical Institute SANU, Kneza Mihaila 36, 11000 Belgrade, Serbia
e School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Serbia

A R T I C L E I N F O

Article history:

Received 20 September 2014
Accepted 10 June 2015
Available online 29 June 2015
Submitted by R. Brualdi

MSC:

05C50

Keywords:
Bipartite graph
Double nested graph
Largest eigenvalue
Spectral bounds
Main eigenvalue

Abstract

In the set of all connected graphs with fixed order and size, the graphs with maximal index are nested split graphs, also called threshold graphs. It was recently (and independently) observed in Bell et al. (2008) [3] and Bhattacharya et al. (2008) [4] that double nested graphs, also called bipartite chain graphs, play the same role within class of bipartite graphs. In this paper we study some structural and spectral features of double nested graphs. In studying the spectrum of double nested graphs we rather consider some weighted nonnegative matrices (of significantly less order) which preserve all positive eigenvalues of former ones. Moreover, their inverse matrices appear to be tridiagonal. Using this fact we provide several new bounds on the index (largest eigenvalue) of double nested graphs, and also deduce some bounds on eigenvector components for the index. We conclude

[^0]the paper by examining the questions related to main versus non-main eigenvalues.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let $G=(V(G), E(G))$ be an undirected simple graph, i.e. a finite graph without loops or multiple edges. $V(G)$ is its vertex set, while $E(G)$ its edge set. The order of G is denoted by $\nu(=|V(G)|)$, and its size by $\epsilon(=|E(G)|)$. We write $u \sim v$ whenever vertices $u, v \in V(G)$ are adjacent, and denote by $u v$ the corresponding edge.

Given a graph $G, A(G)$ denotes the $(0,1)$-adjacency matrix of G. The polynomial $P(x ; G)=\operatorname{det}(x I-A(G))$ is called the characteristic polynomial of G. Its roots comprise the spectrum of G, denoted by $\operatorname{Sp}(G)$. Since $A(G)$ is symmetric, its spectrum is real, and in general it is a multiset containing ν non-necessarily distinct eigenvalues. So let

$$
\lambda_{1}(G) \geq \lambda_{2}(G) \geq \cdots \geq \lambda_{\nu}(G)
$$

be the corresponding eigenvalues (given in non-increasing order). Recall, as well known, $\lambda_{1}(G)>\lambda_{2}(G)$ whenever G is connected. Further on, if not told otherwise, we will consider only connected graphs. The largest eigenvalue of G, denoted by $\rho(G)$, is called the spectral radius of G (or, for short, its index). For a given $\lambda \in \operatorname{Sp}(G), m(\lambda ; G)$ denotes the multiplicity of λ in G. Since $A(G)$ is symmetric, the algebraic and geometric multiplicities of λ coincide. If $m(\lambda ; G)=1$, then λ is a simple eigenvalue of G.

The equation $A \mathbf{x}=\lambda \mathbf{x}$ is called the eigenvalue equation of A, or of a labelled graph G, if $A=A(G)$. For a fixed $\lambda \in \operatorname{Sp}(G)$, a non-trivial solution $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{\nu}\right)^{T}$ of the eigenvalue equation is a λ-eigenvector of a labelled graph G. In particular, if $\lambda=\rho(G)$, then the corresponding vector, with positive coordinates, is called a principal eigenvector of G. In the scalar form, for any $\lambda \in \operatorname{Sp}(G)$, the eigenvalue equation reads:

$$
\lambda x_{u}=\sum_{v \sim u} x_{v}
$$

where $u \in V(G)$. The null space of $A(G)-\lambda I$ is called the eigenspace of G and is denoted by $\mathcal{E}(\lambda ; G)$. Note also that any $\mathbf{x} \in \mathcal{E}(\lambda ; G)$ can be interpreted as a mapping $\mathbf{x}: V(G) \rightarrow \mathbb{R}$. So, for any $v \in V(G), \mathbf{x}(v)$ and x_{v} can be identified, and considered as vertex weights (with respect to \mathbf{x}).

Finally, recall that an eigenvalue μ of G is main if $\mathcal{E}(\mu ; G)$ is not orthogonal to \mathbf{j}, i.e. the all-1 vector; otherwise it is non-main.

For all other notions (and notation) from graph theory, including spectral graph theory, the reader is referred to the book [8]. The same notation will be adopted for matrices, by passing from the adjacency matrix to an arbitrary (symmetric) matrix.

https://daneshyari.com/en/article/4598944

Download Persian Version:

https://daneshyari.com/article/4598944

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: milica.andelic@ua.pt (M. Anđelić), enide@ua.pt (E. Andrade), dcardoso@ua.pt (D.M. Cardoso), carlos@sci.kuniv.edu.kw (C.M. da Fonseca), sksimic@mi.sanu.ac.rs (S.K. Simić), tosic@etf.bg.ac.rs (D.V. Tošić).
 ${ }^{1}$ CIDMA - Center for Research and Development in Mathematics and Applications.
 ${ }^{2}$ Research supported by Serbian Ministry of Science, grant 144015G.

