Uniqueness problem on numerical ranges of 3-by-3 companion matrices

Hsin-Yi Lee
Department of Mathematics, National Central University, Chung-Li 320, Taiwan, ROC

A R T I C L E I N F O

Article history:

Received 22 December 2014
Accepted 9 May 2015
Available online 19 May 2015
Submitted by R. Brualdi

MSC:

15A60

Keywords:

Uniqueness
Numerical range
Companion matrix

Abstract

For any two 3 -by- 3 companion matrices A and B with identical numerical ranges, we give a necessary and sufficient condition for $A=B$ in terms of the shapes of numerical ranges and the locations of eigenvalues. In addition, all distinct 3-by-3 companion matrices with identical numerical ranges can be obtained precisely.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let A be an n-by- n complex matrix. Then the numerical range of $A, W(A)$, is defined as $\left\{\langle A x, x\rangle: x \in \mathbb{C}^{n},\|x\|=1\right\}$, where $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$ denote the standard inner product and its associated norm in \mathbb{C}^{n}, respectively. It is well known that $W(A)$ is a nonempty compact convex subset of the complex plane. Other properties of the numerical range can be found in [4, Chapter 1].

[^0]An n-by- n companion matrix A is one of the form

$$
\left[\begin{array}{ccccc}
0 & 1 & & & \tag{1.1}\\
& 0 & 1 & & \\
& & \ddots & \ddots & \\
& & & 0 & 1 \\
-a_{n} & -a_{n-1} & \cdots & -a_{2} & -a_{1}
\end{array}\right]
$$

It is known that the characteristic and minimal polynomials of such an A are both equal to $z^{n}+a_{1} z^{n-1}+\cdots+a_{n-1} z+a_{n}$.

Our purpose of this paper is to solve the uniqueness problem on numerical ranges of 3-by-3 companion matrices: "assume that A and B are 3-by-3 companion matrices. Can we infer from $W(A)=W(B)$ that $A=B$?" In general, this is not true (cf. [3, Example 2.1]). However, if A and B are restricted to be reducible or $W(A)=W(B)$ is not a non-circular elliptic disc, then $A=B$ (cf. [2, Theorem 2.10] and [3, Theorem 2.2]). These results enable us to concentrate on when a 3 -by- 3 irreducible companion matrix can be determined completely by its elliptic numerical range.

For any two complex numbers z_{1} and z_{2}, we make a minor modification of the existence theorem (cf. [1, Theorem 5.1]) that there exists a 3-by-3 irreducible companion matrix whose numerical range is an elliptic disc with foci z_{1} and z_{2} (Theorem 2.6). In particular, if $z_{1}+z_{2}$ and $z_{1} z_{2}$ are real numbers, then all 3-by- 3 irreducible companion matrices can be found explicitly (Proposition 2.9) which generalizes [1, Theorem 3.1].

We also give a criterion in terms of eigenvalues for 3-by-3 irreducible companion matrices with identical elliptic numerical ranges (Theorem 2.10). At the end of the paper, we summarize essential results to solve the uniqueness problem thoroughly (Theorem 2.17): for any two 3-by- 3 companion matrices A and B with identical numerical ranges, $A=B$ if and only if either their numerical range is not an elliptic disc or an elliptic disc with foci z_{1} and z_{2}, where z_{1} and z_{2} can be described geometrically and their absolute values satisfy a certain inequality. Furthermore, all distinct 3 -by- 3 companion matrices with identical numerical ranges can be obtained precisely.

2. Companion matrices

We start by reviewing the following criterion for a 3 -by- 3 matrix whose numerical range is an elliptic disc (cf. [5, Theorem 2.4]).

Theorem 2.1. Let A be a 3-by-3 matrix with eigenvalues z_{1}, z_{2} and z_{3}. Then the numerical range $W(A)$ is an elliptic disc with foci z_{1} and z_{2} if and only if
(a) $d=\left(\operatorname{tr}\left(A^{*} A\right)-\sum_{j=1}^{3}\left|z_{j}\right|^{2}\right)^{1 / 2}>0$,
(b) $z_{3}=\operatorname{tr} A+\left(1 / d^{2}\right)\left(\sum_{j=1}^{3}\left|z_{j}\right|^{2} z_{j}-\operatorname{tr}\left(A^{*} A^{2}\right)\right)$, and
(c) z_{3} lies inside the elliptic disc with foci z_{1}, z_{2} and minor axis of length d.

https://daneshyari.com/en/article/4598952

Download Persian Version
https://daneshyari.com/article/4598952

Daneshyari.com

[^0]: E-mail address: hylee.am95g@nctu.edu.tw.
 http://dx.doi.org/10.1016/j.laa.2015.05.014
 0024-3795/© 2015 Elsevier Inc. All rights reserved.

