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For any two 3-by-3 companion matrices A and B with 
identical numerical ranges, we give a necessary and sufficient 
condition for A = B in terms of the shapes of numerical ranges 
and the locations of eigenvalues. In addition, all distinct 3-by-3
companion matrices with identical numerical ranges can be 
obtained precisely.
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1. Introduction

Let A be an n-by-n complex matrix. Then the numerical range of A, W (A), is defined 
as {〈Ax, x〉: x ∈ C

n, ‖x‖ = 1}, where 〈·,·〉 and ‖ · ‖ denote the standard inner product 
and its associated norm in Cn, respectively. It is well known that W (A) is a nonempty 
compact convex subset of the complex plane. Other properties of the numerical range 
can be found in [4, Chapter 1].
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An n-by-n companion matrix A is one of the form

⎡
⎢⎢⎢⎢⎢⎣

0 1
0 1

. . . . . .
0 1

−an −an−1 · · · −a2 −a1

⎤
⎥⎥⎥⎥⎥⎦
. (1.1)

It is known that the characteristic and minimal polynomials of such an A are both equal 
to zn + a1z

n−1 + · · · + an−1z + an.
Our purpose of this paper is to solve the uniqueness problem on numerical ranges 

of 3-by-3 companion matrices: “assume that A and B are 3-by-3 companion matrices. 
Can we infer from W (A) = W (B) that A = B?” In general, this is not true (cf. [3, 
Example 2.1]). However, if A and B are restricted to be reducible or W (A) = W (B) is 
not a non-circular elliptic disc, then A = B (cf. [2, Theorem 2.10] and [3, Theorem 2.2]). 
These results enable us to concentrate on when a 3-by-3 irreducible companion matrix 
can be determined completely by its elliptic numerical range.

For any two complex numbers z1 and z2, we make a minor modification of the existence 
theorem (cf. [1, Theorem 5.1]) that there exists a 3-by-3 irreducible companion matrix 
whose numerical range is an elliptic disc with foci z1 and z2 (Theorem 2.6). In particular, 
if z1 + z2 and z1z2 are real numbers, then all 3-by-3 irreducible companion matrices can 
be found explicitly (Proposition 2.9) which generalizes [1, Theorem 3.1].

We also give a criterion in terms of eigenvalues for 3-by-3 irreducible companion matri-
ces with identical elliptic numerical ranges (Theorem 2.10). At the end of the paper, we 
summarize essential results to solve the uniqueness problem thoroughly (Theorem 2.17): 
for any two 3-by-3 companion matrices A and B with identical numerical ranges, A = B

if and only if either their numerical range is not an elliptic disc or an elliptic disc with 
foci z1 and z2, where z1 and z2 can be described geometrically and their absolute values 
satisfy a certain inequality. Furthermore, all distinct 3-by-3 companion matrices with 
identical numerical ranges can be obtained precisely.

2. Companion matrices

We start by reviewing the following criterion for a 3-by-3 matrix whose numerical 
range is an elliptic disc (cf. [5, Theorem 2.4]).

Theorem 2.1. Let A be a 3-by-3 matrix with eigenvalues z1, z2 and z3. Then the numerical 
range W (A) is an elliptic disc with foci z1 and z2 if and only if

(a) d = (tr(A∗A) −
∑3

j=1 |zj |2)1/2 > 0,
(b) z3 = trA + (1/d2)(

∑3
j=1 |zj |2zj − tr(A∗A2)), and

(c) z3 lies inside the elliptic disc with foci z1, z2 and minor axis of length d.
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