

Matrices commuting with a given normal tropical matrix

J. Linde, M.J. de la Puente*

Dpto. de Algebra, Facultad de Matemáticas, Universidad Complutense, Spain

A R T I C L E I N F O

Article history: Received 5 March 2014 Accepted 24 April 2015 Available online 19 May 2015 Submitted by P. Butkovic

MSC: 15A80 14T05

Keywords: Tropical algebra Commuting matrices Normal matrix Idempotent matrix Alcoved polytope Convexity

ABSTRACT

Consider the space M_n^{nor} of square normal matrices $X = (x_{ij})$ over $\mathbb{R} \cup \{-\infty\}$, i.e., $-\infty \leq x_{ij} \leq 0$ and $x_{ii} = 0$. Endow M_n^{nor} with the tropical sum \oplus and multiplication \odot . Fix a real matrix $A \in M_n^{nor}$ and consider the set $\Omega(A)$ of matrices in M_n^{nor} which commute with A. We prove that $\Omega(A)$ is a finite union of alcoved polytopes; in particular, $\Omega(A)$ is a finite union of convex sets. The set $\Omega^A(A)$ of X such that $A \odot X = X \odot A =$ A is also a finite union of alcoved polytopes. The same is true for the set $\Omega'(A)$ of X such that $A \odot X = X \odot A = X$. A topology is given to M_n^{nor} . Then, the set $\Omega^A(A)$ is a neighborhood of the identity matrix I. If A is strictly normal, then $\Omega'(A)$ is a neighborhood of the zero matrix. In one case, $\Omega(A)$ is a neighborhood of A. We give an upper bound for the dimension of $\Omega'(A)$. We explore the relationship between the polyhedral complexes span A, span X and span(AX), when A and X commute. Two matrices, denoted A and \overline{A} , arise from A, in connection with $\Omega(A)$. The geometric meaning of them is given in detail, for one example. We produce examples of matrices which commute, in any dimension.

© 2015 Elsevier Inc. All rights reserved.

* Corresponding author. Tel.: +34 91 3944659. E-mail addresses: jorgelinde@ucm.es (J. Linde), mpuente@mat.ucm.es (M.J. de la Puente).

http://dx.doi.org/10.1016/j.laa.2015.04.032 0024-3795/© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let $n \in \mathbb{N}$ and K be a field. Fix a matrix $A \in M_n(K)$ and consider K[A], the algebra of polynomial expressions in A. In classical mathematics, the set $\Omega(A)$ of matrices commuting with A is well-known: $\Omega(A)$ equals K[A] if and only if the characteristic and minimal polynomials of A coincide. Otherwise, K[A] is a proper linear subspace of $\Omega(A)$; see [27, Chap. VII].

In this paper we study the analog of $\Omega(A)$ in the tropical setting. Moreover, we restrict ourselves to square *normal* matrices over $\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty\}$, i.e., matrices $A = (a_{ij})$ with $a_{ii} = 0$ and $-\infty \leq a_{ij} \leq 0$, for all i, j. The set of all such matrices, endowed with the tropical operations $\oplus = \max$ and $\odot = +$, is denoted M_n^{nor} .

For any $r \in \mathbb{R}_{\leq 0}$, the half-line $[-\infty, r) := \{x : -\infty \leq x < r\}$ is open in $\overline{\mathbb{R}}_{\leq 0}$ with the usual interval topology. A Cartesian product of such half-lines is open in $\overline{\mathbb{R}}_{\leq 0}^{n^2-n}$ with the usual product topology. The half-line $(r, 0] := \{x : r < x \leq 0\}$ is open in $\overline{\mathbb{R}}_{\leq 0}$. A Cartesian product of such half-lines is open in $\overline{\mathbb{R}}_{\leq 0}^{n^2-n}$.

The set M_n^{nor} can be identified with $\overline{\mathbb{R}}_{\leq 0}^{n^2-n}$ and, via this identification, M_n^{nor} gets a topology. Consider a matrix $X \in M_n^{nor}$ and a subset $V \subseteq M_n^{nor}$. We say that V is a neighborhood of X if there exists an open subset $U \subseteq M_n^{nor}$ such that $X \in U \subseteq V$ (we do not require V to be open).

Let $\Omega(A)$ be the subset of matrices commuting with a given real matrix A, i.e., $X \in M_n^{nor}$ such that $A \odot X = X \odot A$. The tropical analog of K[A] inside M_n^{nor} is the set $\mathcal{P}(A)$ of tropical powers of A. In general, $\Omega(A)$ is larger than $\mathcal{P}(A)$ (see Proposition 1).

Our new results are gathered in Sections 3, 4 and 5. In Section 3 we prove that

$$\Omega(A) = \bigcup_{w} \Omega_w(A)$$

is a finite union of alcoved polytopes (see Corollary 5). In particular, $\Omega(A)$ is a finite union of convex sets.

Two important subsets of $\Omega(A)$ are

$$\Omega^{A}(A) = \{ X \in \Omega(A) : X \odot A = A \odot X = A \}$$

and

$$\Omega'(A) = \{ X \in \Omega(A) : X \odot A = A \odot X = X \}.$$

Both are finite unions of alcoved polytopes (see Theorems 9 and 12). Moreover, $\Omega^A(A)$ is a neighborhood (not necessarily open) of the identity matrix *I*. If *A* is strictly normal, then $\Omega'(A)$ is a neighborhood of the zero matrix 0 (see Propositions 7 and 8).

The study of $\Omega^A(A)$ and $\Omega'(A)$ lead us to two matrices arising from A, denoted <u>A</u> and \overline{A} , and we prove

Download English Version:

https://daneshyari.com/en/article/4598953

Download Persian Version:

https://daneshyari.com/article/4598953

Daneshyari.com