Matrices commuting with a given normal tropical matrix

J. Linde, M.J. de la Puente*
Dpto. de Algebra, Facultad de Matemáticas, Universidad Complutense, Spain

A R T I C L E I N F O

Article history:

Received 5 March 2014
Accepted 24 April 2015
Available online 19 May 2015
Submitted by P. Butkovic

MSC:

15A80
14 T 05

Keywords:

Tropical algebra
Commuting matrices
Normal matrix
Idempotent matrix
Alcoved polytope
Convexity

A B S T R A C T

Consider the space $M_{n}^{\text {nor }}$ of square normal matrices $X=\left(x_{i j}\right)$ over $\mathbb{R} \cup\{-\infty\}$, i.e., $-\infty \leq x_{i j} \leq 0$ and $x_{i i}=0$. Endow $M_{n}^{\text {nor }}$ with the tropical sum \oplus and multiplication \odot. Fix a real matrix $A \in M_{n}^{n o r}$ and consider the set $\Omega(A)$ of matrices in $M_{n}^{n o r}$ which commute with A. We prove that $\Omega(A)$ is a finite union of alcoved polytopes; in particular, $\Omega(A)$ is a finite union of convex sets. The set $\Omega^{A}(A)$ of X such that $A \odot X=X \odot A=$ A is also a finite union of alcoved polytopes. The same is true for the set $\Omega^{\prime}(A)$ of X such that $A \odot X=X \odot A=X$.
A topology is given to $M_{n}^{n o r}$. Then, the set $\Omega^{A}(A)$ is a neighborhood of the identity matrix I. If A is strictly normal, then $\Omega^{\prime}(A)$ is a neighborhood of the zero matrix. In one case, $\Omega(A)$ is a neighborhood of A. We give an upper bound for the dimension of $\Omega^{\prime}(A)$. We explore the relationship between the polyhedral complexes span $A, \operatorname{span} X$ and $\operatorname{span}(A X)$, when A and X commute. Two matrices, denoted \underline{A} and \bar{A}, arise from A, in connection with $\Omega(A)$. The geometric meaning of them is given in detail, for one example. We produce examples of matrices which commute, in any dimension.
© 2015 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let $n \in \mathbb{N}$ and K be a field. Fix a matrix $A \in M_{n}(K)$ and consider $K[A]$, the algebra of polynomial expressions in A. In classical mathematics, the set $\Omega(A)$ of matrices commuting with A is well-known: $\Omega(A)$ equals $K[A]$ if and only if the characteristic and minimal polynomials of A coincide. Otherwise, $K[A]$ is a proper linear subspace of $\Omega(A)$; see [27, Chap. VII].

In this paper we study the analog of $\Omega(A)$ in the tropical setting. Moreover, we restrict ourselves to square normal matrices over $\overline{\mathbb{R}}:=\mathbb{R} \cup\{-\infty\}$, i.e., matrices $A=\left(a_{i j}\right)$ with $a_{i i}=0$ and $-\infty \leq a_{i j} \leq 0$, for all i, j. The set of all such matrices, endowed with the tropical operations $\oplus=\max$ and $\odot=+$, is denoted $M_{n}^{\text {nor }}$.

For any $r \in \mathbb{R}_{\leq 0}$, the half-line $[-\infty, r):=\{x:-\infty \leq x<r\}$ is open in $\overline{\mathbb{R}}_{\leq 0}$ with the usual interval topology. A Cartesian product of such half-lines is open in $\overline{\mathbb{R}}_{\leq 0}^{n^{2}-n}$ with the usual product topology. The half-line $(r, 0]:=\{x: r<x \leq 0\}$ is open in $\overline{\mathbb{R}}_{\leq 0}$. A Cartesian product of such half-lines is open in $\overline{\mathbb{R}}_{\leq 0}^{n^{2}-n}$.

The set $M_{n}^{\text {nor }}$ can be identified with $\overline{\mathbb{R}}_{\leq 0}^{n^{2}-n}$ and, via this identification, $M_{n}^{\text {nor }}$ gets a topology. Consider a matrix $X \in M_{n}^{\text {nor }}$ and a subset $V \subseteq M_{n}^{n o r}$. We say that V is a neighborhood of X if there exists an open subset $U \subseteq M_{n}^{\text {nor }}$ such that $X \in U \subseteq V$ (we do not require V to be open).

Let $\Omega(A)$ be the subset of matrices commuting with a given real matrix A, i.e., $X \in$ $M_{n}^{\text {nor }}$ such that $A \odot X=X \odot A$. The tropical analog of $K[A]$ inside $M_{n}^{n o r}$ is the set $\mathcal{P}(A)$ of tropical powers of A. In general, $\Omega(A)$ is larger than $\mathcal{P}(A)$ (see Proposition 1).

Our new results are gathered in Sections 3, 4 and 5. In Section 3 we prove that

$$
\Omega(A)=\bigcup_{w} \Omega_{w}(A)
$$

is a finite union of alcoved polytopes (see Corollary 5). In particular, $\Omega(A)$ is a finite union of convex sets.

Two important subsets of $\Omega(A)$ are

$$
\Omega^{A}(A)=\{X \in \Omega(A): X \odot A=A \odot X=A\}
$$

and

$$
\Omega^{\prime}(A)=\{X \in \Omega(A): X \odot A=A \odot X=X\}
$$

Both are finite unions of alcoved polytopes (see Theorems 9 and 12). Moreover, $\Omega^{A}(A)$ is a neighborhood (not necessarily open) of the identity matrix I. If A is strictly normal, then $\Omega^{\prime}(A)$ is a neighborhood of the zero matrix 0 (see Propositions 7 and 8).

The study of $\Omega^{A}(A)$ and $\Omega^{\prime}(A)$ lead us to two matrices arising from A, denoted \underline{A} and \bar{A}, and we prove

https://daneshyari.com/en/article/4598953

Download Persian Version:
https://daneshyari.com/article/4598953

Daneshyari.com

[^0]: * Corresponding author. Tel.: +34 913944659.

 E-mail addresses: jorgelinde@ucm.es (J. Linde), mpuente@mat.ucm.es (M.J. de la Puente).

