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In this paper, we investigate some equalities for the trace-class 
operators on a Hilbert space. For two trace-class operators A
and B, we get some equivalent conditions for ‖A‖1 + ‖B‖1 =
‖A + B‖1, where ‖A‖1 is the trace norm of the trace-class 
operator A. Particularly, we show that ‖A‖1 + ‖B‖1 = ‖A +
B‖1 if and only if |A| + |B| = |A + B| for two trace-class 
operators A and B. This condition is related to a result of 
Ando and Hayashi. Moreover, some characterizations of the 
equality ‖A‖1 +‖A∗‖1 = ‖A +A∗‖1 and other relevant results 
are given.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let H and K be separable Hilbert spaces and B(H) (B(H, K)) be the set of all bounded 
linear operators on H (from H to K). For an operator A ∈ B(H), the adjoint of A is 
denoted by A∗ and A is said to be self-adjoint if A = A∗. We also denote by R(A), 
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R(A) and N(A) the range, the closed linear span of the range and the null space of A, 
respectively. We write A ≥ 0 if A is a positive operator, meaning 〈Ax, x〉 ≥ 0 for all 
x ∈ H. As usual, Re(A), Im(A), and |A| are the real part, the imaginary part and 
the absolute value of operator A ∈ B(H), respectively; and A+ and A− are the posi-
tive and negative parts of A, that is, A+ = A+|A|

2 , and A− = |A|−A
2 . For any compact 

operator A, let s1, s2, · · · be the eigenvalues of |A| in decreasing order and repeated ac-
cording to multiplicity. The compact operator A is said to be in the Schatten p-class Cp

(1 ≤ p < ∞), if 
∞∑
i=1

spi < ∞. The Schatten p-norm of A is defined as ‖A‖p = (
∞∑
i=1

spi )
1
p . 

This norm makes Cp into a Banach space. When p = 1, we get the set of all trace-
class operators, denoted by C1(H); and when p = 2, C2 is the set of Hilbert–Schmidt 
class.

Recently, many mathematicians have paid much attention to the Schatten p-norm and 
the triangle inequality of the operator value. Many interesting results have been obtained 
in [3,6,8–13]. Some results relevant for our purposes are the following (see [9,10]): if {Ei}
is a family of orthogonal projections satisfying EiEj = 0 then ‖A‖pp ≥

∑
i=1

‖EiAEi‖pp and 

for p > 1 equality will hold if and only if A =
∑
i=1

EiAEi. Our results (Proposition 2.5

and Remark 2.1) show that for the case of p = 1, the equivalent condition of ‖A‖1 =∑
i=1

‖EiAEi‖1 is completely different. Particularly, Ando and Hayashi have obtained that 

for two bounded linear operators X, Y ∈ B(H), the triangle equality |X+Y | = |X| + |Y |
holds if and only if there exists a partial isometry U such that X = U |X| and Y = U |Y |
in [1]. This result is also a generalization of Thompson’s theorem in [15].

The purpose of this paper is to consider the properties of two trace-class operators 
A and B such that ‖A + B‖1 = ‖A‖1 + ‖B‖1. We show that this is related to the 
above triangle equality. Then we mainly characterize the conditions for ‖A + B‖1 =
‖A − B‖1 = ‖A‖1 + ‖B‖1. Our results show that this equality is equivalent to the 
orthogonality of the range of operators. Moreover, the structures of operator A with 
equation ‖A‖1 + ‖A∗‖1 = ‖A + A∗‖1 are given. As corollaries, we also obtain other 
relevant results.

2. Main results

To show our main results, the following lemmas are needed.

Lemma 2.1. (See [5, Corollary 18.12].) Let A ∈ C1(H). If {ei}∞i=1 and {fi}∞i=1 are two 
orthonormal bases of H, then

∞∑
i=1

|〈Aei, fi〉| ≤ tr(|A|) and |tr(A)| ≤ tr(|A|).

The next lemma is used in [2,4]. However, we do not find a proof. For completeness 
and for the convenience of readers, we provide the following proof.
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