On Schatten p-norms of commutators

Che-Man Cheng *, Chunyu Lei
Department of Mathematics, University of Macau, Macao, China

A R T I C L E I N F O

Article history:

Received 10 February 2015
Accepted 12 July 2015
Available online 28 July 2015
Submitted by R. Brualdi

$M S C$:
 15A45

Keywords:
Schatten p-norm
Commutator
Norm inequality

A B S T R A C T

For any odd integer $d \geq 3$, we determine the sharpest constant $C_{p, q, r}$ such that

$$
\|X Y-Y X\|_{p} \leq C_{p, q, r}\|X\|_{q}\|Y\|_{r} \quad \text { for all } X, Y \in M_{d}
$$

where M_{d} denotes the set of all $d \times d$ complex matrices, $\|\cdot\|_{p}$, $1 \leq p \leq \infty$, denotes the Schatten p-norm on M_{d}, and $1 \leq$ $p, q, r \leq \infty$ satisfy $\frac{1}{p}>\frac{1}{q}+\frac{1}{r}$. This is a continuation of the study of the problem considered in Wenzel and Audenaert (2010) [8].
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let M_{d} denote the set of all $d \times d$ complex matrices and I_{d} denote the identity matrix of order d. For $X \in M_{d}$, let X^{*} denote the conjugate transpose of X. Let $\|\cdot\|_{p}, 1 \leq p \leq \infty$, denote the Schatten p-norm on M_{d}. In particular, $\|\cdot\|_{2}$ is the Frobenius norm and $\|\cdot\|_{\infty}$ is the operator norm. We adopt the common usage that $\frac{1}{\infty}=0, \frac{1}{0}=\infty$ and $\frac{\infty}{\infty-1}=1$.

[^0]In 2005, Böttcher and Wenzel [2] raised the following problem: show that an upper bound of the Frobenius norm of the commutator of any real square matrices X and Y is given by

$$
\begin{equation*}
\|X Y-Y X\|_{2} \leq \sqrt{2}\|X\|_{2}\|Y\|_{2} \tag{1.1}
\end{equation*}
$$

This conjecture was first proved by Vong and Jin [7] and independently by Lu [5]. Böttcher and Wenzel [3] and Audenaert [1] extended the result to complex matrices. For more results related to this conjecture, one may refer to a recent survey [4].

Wenzel and Audenaert [8] considered the following generalization: find the smallest constant $C_{p, q, r}, 1 \leq p, q, r \leq \infty$, such that

$$
\begin{equation*}
\|X Y-Y X\|_{p} \leq C_{p, q, r}\|X\|_{q}\|Y\|_{r} \quad \text { for all } X, Y \in M_{d} \tag{1.2}
\end{equation*}
$$

In their paper, results are obtained for many instances $(p, q \cdot r) \in[1, \infty]^{3}$. Nevertheless, the problem is still open in two situations:
(1) $d \geq 3$ is odd and p, q, r satisfy $\frac{1}{p}>\frac{1}{q}+\frac{1}{r}$ (except for $(p, q, r)=(1, \infty, \infty)$); and
(2) $p>2, q<2$ and $r<2$ (except for $(p, q, r)=(\infty, 1,1)$).

In this paper, we solve the problem for case (1). In contrast to the other (p, q, r)-regions, the constant $C_{p, q, r}$ here depends on the matrix size. Moreover, it has been observed in [8] that even and odd d will behave very different.

2. A critical case

When proving the analogous case for even d, a single rule for the region was found. However, it was conjectured that the region likely has to be split once more when d is odd. In the following lemma, the two examples suggesting the presence of such a turning point deliver a lower bound to $C_{p, q, r}$, in general.

Lemma 2.1. Let $d \geq 3$ be an odd integer and $1 \leq p, q, r \leq \infty$. Then

$$
C_{p, q, r} \geq \max \left\{2(d-1)^{\frac{1}{p}-\frac{1}{q}-\frac{1}{r}}, 2 d^{\frac{1}{p}-\frac{1}{q}-\frac{1}{r}} \cos \frac{\pi}{2 d}\right\}
$$

Proof. The following two examples were used in [8] for investigating the special case $q=r=\infty$. Note that the second one is given here in an equivalent (suitably permuted) manner. Let

$$
X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \oplus \cdots \oplus\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \oplus[0], \quad Y=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \oplus \cdots \oplus\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \oplus[0]
$$

Direct calculation shows that $C_{p, q, r} \geq \frac{\|X Y-Y X\|_{p}}{\|X\|_{q}\|Y\|_{r}}=2(d-1)^{\frac{1}{p}-\frac{1}{q}-\frac{1}{r}}$.
Let $\alpha=e^{\mathbf{i} \frac{(d-1) \pi}{d}}$,

https://daneshyari.com/en/article/4598985

Download Persian Version:

https://daneshyari.com/article/4598985

Daneshyari.com

[^0]: This research is supported by research grant MYRG065(Y1-L2)-FST13-CCM from the University of Macau.

 * Corresponding author.

 E-mail addresses: fstcmc@umac.mo (C.-M. Cheng), leichunyu_12@163.com (C. Lei).

