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The authors’ monograph Spectral Generalizations of Line 
Graphs was published in 2004, following the successful use 
of star complements to complete the classification of graphs 
with least eigenvalue −2. Guided by citations of the book, we 
survey progress in this area over the past decade. Some new 
observations are included.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a simple graph with n vertices. The characteristic polynomial det(xI − A)
of the adjacency matrix A of G is called the characteristic polynomial of G and denoted 
by PG(x). The eigenvalues of A (i.e. the zeros of det(xI − A)) and the spectrum of A
(which consists of the n eigenvalues) are also called the eigenvalues and the spectrum
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of G, respectively. The eigenvalues of G are real because A is symmetric; they are usually 
denoted by λ1, λ2, . . . , λn, in non-increasing order. The largest eigenvalue λ1 is called the 
index of G, and G is said to be integral if every eigenvalue is an integer. An overview of 
results on graph spectra is given in [2,5,1].

Let L (L+, L0) be the set of graphs whose least eigenvalue is greater than or equal 
to −2 (greater than −2, equal to −2). A graph is called an L-graph (L+-graph, L0-graph) 
if its least eigenvalue is greater than or equal to −2 (greater than −2, equal to −2).

The line graph L(H) of any graph H is defined as follows. The vertices of L(H) are the 
edges of H, and two vertices of L(H) are adjacent whenever the corresponding edges of 
H have a vertex of H in common. Interest in the study of graphs with least eigenvalue −2
began with the elementary observation that line graphs have least eigenvalue greater than 
or equal to −2. A natural problem arose to classify the graphs with such a remarkable 
property. It transpired that line graphs share this property with generalized line graphs 
and with some exceptional graphs (defined below).

The authors’ scientific monograph on L-graphs [4] was published in 2004, following 
the successful use of star complements to complete the classification of L-graphs, and it 
summarized almost all results on the subject known at the time. We felt that the main 
problems concerning L-graphs had been solved. However, we now see that the book did 
not mark the end of the story: it is the aim of this paper to review the many new and 
important results on star complements and spectral aspects of L-graphs that have been 
obtained in the last decade.

The rest of the paper is organized as follows. Section 2 contains some technical details 
concerning the book and related bibliographies. In Section 3 we present some definitions 
and basic results required subsequently. Sections 4 and 5 contain recent results obtained 
by the star complement technique. In Section 6 we describe constructions for the excep-
tional regular L-graphs, 1-Salem graphs and non-bipartite integral graphs with index 3. 
Section 7 deals with spectral characterizations and cospectral graphs. In Section 8 we 
discuss Hoffman graphs and limit points for the least eigenvalue of a graph in the in-
terval [−3, −1]. Section 9 is concerned with the multiplicity of 0 as an eigenvalue of an 
L-graph. In Section 10 we point out the relation between the signless Laplacian spec-
trum of a graph G and the (adjacency) spectrum of L(G). Section 11 shows how results 
on L-graphs have been extended to signed graphs. Section 12 deals with applications 
to control theory and computer science, while Section 13 summarizes developments in a 
miscellany of other topics.

2. Corrections, reviews and citations

Appendix A contains a list of errata in [4], taken from the website www.cs.stir.ac.
uk/~pr/, where a list of corrections is currently maintained; some of these corrections 
were already given in [41]. The first section in our bibliography below gives a list of 
complete references that were not given fully in [4]. Refs. [BeSi] and [CvSt] from [4] refer 
to [4] itself, while the paper [144] cites [4] as a manuscript.

http://www.cs.stir.ac.uk/~pr/
http://www.cs.stir.ac.uk/~pr/


Download English Version:

https://daneshyari.com/en/article/4598990

Download Persian Version:

https://daneshyari.com/article/4598990

Daneshyari.com

https://daneshyari.com/en/article/4598990
https://daneshyari.com/article/4598990
https://daneshyari.com

