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Let H be a uniform hypergraph. Let A(H) and Q(H) be 
the adjacency tensor and the signless Laplacian tensor of H, 
respectively. In this note we prove several bounds for the 
spectral radius of A(H) and Q(H) in terms of the degrees 
of vertices of H.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We denote the set {1, 2, · · ·, n} by [n]. Hypergraph is a natural generalization of 
ordinary graph (see [1]). A hypergraph H = (V (H), E(H)) on n vertices is a set of 
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vertices, say V (H) = {1, 2, · · ·, n} and a set of edges, say E(H) = {e1, e2, · · ·, em}, 
where ei = {i1, i2, · · · , il}, ij ∈ [n], j = 1, 2, · · · , l. If |ei| = k for any i = 1, 2, · · ·, m, 
then H is called a k-uniform hypergraph. The degree di of vertex i is defined as di =
|{ej : i ∈ ej ∈ E(H)}|. If di = d for any vertex i of hypergraph H, then H is called 
a d-regular hypergraph. An order k dimension n tensor T =(Ti1i2···ik) ∈ C

n×n×···×n is 
a multidimensional array with nk entries, where ij ∈ [n] for each j = 1, 2, · · ·, k. To 
study the properties of uniform hypergraphs by algebraic methods, adjacency matrix 
and signless Laplacian matrix of graph are generalized to adjacency tenor and signless 
Laplacian tensor of uniform hypergraph.

Definition 1. (See [5,8].) Let H = (V (H), E(H)) be a k-uniform hypergraph on n vertices. 
The adjacency tensor of H is defined as the k-th order n-dimensional tensor A(H) whose 
(i1 · · · ik)-entry is:

(A(H))i1i2···ik =
{

1
(k−1)! {i1, i2, · · · , ik} ∈ E(H)
0 otherwise.

Let D(H) be a k-th order n-dimensional diagonal tensor, with its diagonal entry Dii···i
being di, the degree of vertex i, for all i ∈ [n]. Then Q(H) = D(H)+A(H) is the signless 
Laplacian tensor of the hypergraph H.

The following general product of tensors, was defined in [9] by Shao, which is a gen-
eralization of the matrix case.

Definition 2. Let A ∈ C
n1×n2×···×n2 and B ∈ C

n2×n3×···×nk+1 be order m ≥ 2 and k ≥ 1
tensors, respectively. The product AB is the following tensor C of order (m −1)(k−1) +1
with entries:

Ciα1···αm−1 =
∑

i2,···,im∈[n2]

Aii2···imBi2α1 · · · Bimαm−1 , (1)

where i ∈ [n1], α1, · · · , αm−1 ∈ [n3] × · · · × [nk+1].

Let T be an order k dimension n tensor, let x = (x1, · · ·, xn)T ∈ C
n be a column 

vector of dimension n. Then by (1) T x is a vector in Cn whose i-th component is as the 
following

(T x)i =
n∑

i2,···,ik=1
Tii2···ikxi2 · · ·xik . (2)

Let x[k] = (xk
1 , · · · , xk

n)T . Then (see [2,8]) a number λ ∈ C is called an eigenvalue of the 
tensor T if there exists a nonzero vector x ∈ C

n satisfying the following eigenequations

T xk−1 = λx[k−1], (3)

and in this case, x is called an eigenvector of T corresponding to eigenvalue λ.
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