Some upper bounds on the eigenvalues of uniform hypergraphs

Xiying Yuan ${ }^{\text {a,1 }}$, Man Zhang ${ }^{\text {a }}$, Mei Lu ${ }^{\text {b,*,2 }}$
${ }^{\text {a }}$ Department of Mathematics, Shanghai University, Shanghai 200444, China
${ }^{\text {b }}$ Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, China

A R T I C L E I N F O

Article history:

Received 25 January 2015
Accepted 17 June 2015
Available online 7 August 2015
Submitted by J.y. Shao

$M S C$:

15A42
05C50

Keywords:
Hypergraph
Adjacency tensor
Signless Laplacian tensor
Spectral radius
Bounds

A B S TRACT

Let \mathcal{H} be a uniform hypergraph. Let $\mathcal{A}(\mathcal{H})$ and $\mathcal{Q}(\mathcal{H})$ be the adjacency tensor and the signless Laplacian tensor of \mathcal{H}, respectively. In this note we prove several bounds for the spectral radius of $\mathcal{A}(\mathcal{H})$ and $\mathcal{Q}(\mathcal{H})$ in terms of the degrees of vertices of \mathcal{H}.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We denote the set $\{1,2, \cdots, n\}$ by $[n]$. Hypergraph is a natural generalization of ordinary graph (see [1]). A hypergraph $\mathcal{H}=(V(\mathcal{H}), E(\mathcal{H}))$ on n vertices is a set of

[^0]vertices, say $V(\mathcal{H})=\{1,2, \cdots, n\}$ and a set of edges, say $E(\mathcal{H})=\left\{e_{1}, e_{2}, \cdots, e_{m}\right\}$, where $e_{i}=\left\{i_{1}, i_{2}, \cdots, i_{l}\right\}, i_{j} \in[n], j=1,2, \cdots, l$. If $\left|e_{i}\right|=k$ for any $i=1,2, \cdots, m$, then \mathcal{H} is called a k-uniform hypergraph. The degree d_{i} of vertex i is defined as $d_{i}=$ $\left|\left\{e_{j}: i \in e_{j} \in E(\mathcal{H})\right\}\right|$. If $d_{i}=d$ for any vertex i of hypergraph \mathcal{H}, then \mathcal{H} is called a d-regular hypergraph. An order k dimension n tensor $\mathcal{T}=\left(\mathcal{T}_{i_{1} i_{2} \cdots i_{k}}\right) \in \mathbb{C}^{n \times n \times \cdots \times n}$ is a multidimensional array with n^{k} entries, where $i_{j} \in[n]$ for each $j=1,2, \cdots, k$. To study the properties of uniform hypergraphs by algebraic methods, adjacency matrix and signless Laplacian matrix of graph are generalized to adjacency tenor and signless Laplacian tensor of uniform hypergraph.

Definition 1. (See [5,8].) Let $\mathcal{H}=(V(\mathcal{H}), E(\mathcal{H}))$ be a k-uniform hypergraph on n vertices. The adjacency tensor of \mathcal{H} is defined as the k-th order n-dimensional tensor $\mathcal{A}(\mathcal{H})$ whose ($i_{1} \cdots i_{k}$)-entry is:

$$
(\mathcal{A}(\mathcal{H}))_{i_{1} i_{2} \cdots i_{k}}= \begin{cases}\frac{1}{(k-1)!} & \left\{i_{1}, i_{2}, \cdots, i_{k}\right\} \in E(\mathcal{H}) \\ 0 & \text { otherwise }\end{cases}
$$

Let $\mathcal{D}(\mathcal{H})$ be a k-th order n-dimensional diagonal tensor, with its diagonal entry $\mathcal{D}_{i i \cdots i}$ being d_{i}, the degree of vertex i, for all $i \in[n]$. Then $\mathcal{Q}(\mathcal{H})=\mathcal{D}(\mathcal{H})+\mathcal{A}(\mathcal{H})$ is the signless Laplacian tensor of the hypergraph \mathcal{H}.

The following general product of tensors, was defined in [9] by Shao, which is a generalization of the matrix case.

Definition 2. Let $\mathcal{A} \in \mathbb{C}^{n_{1} \times n_{2} \times \cdots \times n_{2}}$ and $\mathcal{B} \in \mathbb{C}^{n_{2} \times n_{3} \times \cdots \times n_{k+1}}$ be order $m \geq 2$ and $k \geq 1$ tensors, respectively. The product $\mathcal{A B}$ is the following tensor \mathcal{C} of order $(m-1)(k-1)+1$ with entries:

$$
\begin{equation*}
\mathcal{C}_{i \alpha_{1} \cdots \alpha_{m-1}}=\sum_{i_{2}, \cdots, i_{m} \in\left[n_{2}\right]} \mathcal{A}_{i i_{2} \cdots i_{m}} \mathcal{B}_{i_{2} \alpha_{1}} \cdots \mathcal{B}_{i_{m} \alpha_{m-1}} \tag{1}
\end{equation*}
$$

where $i \in\left[n_{1}\right], \alpha_{1}, \cdots, \alpha_{m-1} \in\left[n_{3}\right] \times \cdots \times\left[n_{k+1}\right]$.
Let \mathcal{T} be an order k dimension n tensor, let $x=\left(x_{1}, \cdots, x_{n}\right)^{T} \in \mathbb{C}^{n}$ be a column vector of dimension n. Then by (1) $\mathcal{T} x$ is a vector in \mathbb{C}^{n} whose i-th component is as the following

$$
\begin{equation*}
(\mathcal{T} x)_{i}=\sum_{i_{2}, \cdots, i_{k}=1}^{n} \mathcal{T}_{i i_{2} \cdots i_{k}} x_{i_{2}} \cdots x_{i_{k}} \tag{2}
\end{equation*}
$$

Let $x^{[k]}=\left(x_{1}^{k}, \cdots, x_{n}^{k}\right)^{T}$. Then (see $\left.[2,8]\right)$ a number $\lambda \in \mathbb{C}$ is called an eigenvalue of the tensor \mathcal{T} if there exists a nonzero vector $x \in \mathbb{C}^{n}$ satisfying the following eigenequations

$$
\begin{equation*}
\mathcal{T} x^{k-1}=\lambda x^{[k-1]} \tag{3}
\end{equation*}
$$

and in this case, x is called an eigenvector of \mathcal{T} corresponding to eigenvalue λ.

https://daneshyari.com/en/article/4598991

Download Persian Version:

https://daneshyari.com/article/4598991

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: xiyingyuan2007@hotmail.com (X. Yuan), mlu@math.tsinghua.edu.cn (M. Lu).
 ${ }^{1}$ Partially supported by NNSFC (No. 11101263), and by a grant of "The First-class Discipline of Universities in Shanghai".
 ${ }^{2}$ Partially supported by NNSFC (Nos. 61373019, 11171097).

