

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Some upper bounds on the eigenvalues of uniform hypergraphs

LINEAR ALGEBRA and its

Applications

Xiying Yuan^{a,1}, Man Zhang^a, Mei Lu^{b,*,2}

^a Department of Mathematics, Shanghai University, Shanghai 200444, China
 ^b Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, China

ARTICLE INFO

Article history: Received 25 January 2015 Accepted 17 June 2015 Available online 7 August 2015 Submitted by J.y. Shao

MSC: 15A42 05C50

Keywords: Hypergraph Adjacency tensor Signless Laplacian tensor Spectral radius Bounds

ABSTRACT

Let \mathcal{H} be a uniform hypergraph. Let $\mathcal{A}(\mathcal{H})$ and $\mathcal{Q}(\mathcal{H})$ be the adjacency tensor and the signless Laplacian tensor of \mathcal{H} , respectively. In this note we prove several bounds for the spectral radius of $\mathcal{A}(\mathcal{H})$ and $\mathcal{Q}(\mathcal{H})$ in terms of the degrees of vertices of \mathcal{H} .

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We denote the set $\{1, 2, \dots, n\}$ by [n]. Hypergraph is a natural generalization of ordinary graph (see [1]). A hypergraph $\mathcal{H} = (V(\mathcal{H}), E(\mathcal{H}))$ on n vertices is a set of

 $[\]ast\,$ Corresponding author.

E-mail addresses: xiyingyuan2007@hotmail.com (X. Yuan), mlu@math.tsinghua.edu.cn (M. Lu).

¹ Partially supported by NNSFC (No. 11101263), and by a grant of "The First-class Discipline of Universities in Shanghai".

 $^{^2\,}$ Partially supported by NNSFC (Nos. 61373019, 11171097).

vertices, say $V(\mathcal{H}) = \{1, 2, \dots, n\}$ and a set of edges, say $E(\mathcal{H}) = \{e_1, e_2, \dots, e_m\}$, where $e_i = \{i_1, i_2, \dots, i_l\}, i_j \in [n], j = 1, 2, \dots, l$. If $|e_i| = k$ for any $i = 1, 2, \dots, m$, then \mathcal{H} is called a k-uniform hypergraph. The degree d_i of vertex i is defined as $d_i =$ $|\{e_j : i \in e_j \in E(\mathcal{H})\}|$. If $d_i = d$ for any vertex i of hypergraph \mathcal{H} , then \mathcal{H} is called a d-regular hypergraph. An order k dimension n tensor $\mathcal{T} = (\mathcal{T}_{i_1 i_2 \dots i_k}) \in \mathbb{C}^{n \times n \times \dots \times n}$ is a multidimensional array with n^k entries, where $i_j \in [n]$ for each $j = 1, 2, \dots, k$. To study the properties of uniform hypergraphs by algebraic methods, adjacency matrix and signless Laplacian matrix of graph are generalized to adjacency tenor and signless Laplacian tensor of uniform hypergraph.

Definition 1. (See [5,8].) Let $\mathcal{H} = (V(\mathcal{H}), E(\mathcal{H}))$ be a k-uniform hypergraph on n vertices. The adjacency tensor of \mathcal{H} is defined as the k-th order n-dimensional tensor $\mathcal{A}(\mathcal{H})$ whose $(i_1 \cdots i_k)$ -entry is:

$$(\mathcal{A}(\mathcal{H}))_{i_1 i_2 \cdots i_k} = \begin{cases} \frac{1}{(k-1)!} & \{i_1, i_2, \cdots, i_k\} \in E(\mathcal{H}) \\ 0 & \text{otherwise.} \end{cases}$$

Let $\mathcal{D}(\mathcal{H})$ be a k-th order n-dimensional diagonal tensor, with its diagonal entry $\mathcal{D}_{ii\cdots i}$ being d_i , the degree of vertex i, for all $i \in [n]$. Then $\mathcal{Q}(\mathcal{H}) = \mathcal{D}(\mathcal{H}) + \mathcal{A}(\mathcal{H})$ is the signless Laplacian tensor of the hypergraph \mathcal{H} .

The following general product of tensors, was defined in [9] by Shao, which is a generalization of the matrix case.

Definition 2. Let $\mathcal{A} \in \mathbb{C}^{n_1 \times n_2 \times \cdots \times n_2}$ and $\mathcal{B} \in \mathbb{C}^{n_2 \times n_3 \times \cdots \times n_{k+1}}$ be order $m \ge 2$ and $k \ge 1$ tensors, respectively. The product \mathcal{AB} is the following tensor \mathcal{C} of order (m-1)(k-1)+1 with entries:

$$C_{i\alpha_1\cdots\alpha_{m-1}} = \sum_{i_2,\cdots,i_m \in [n_2]} \mathcal{A}_{ii_2\cdots i_m} \mathcal{B}_{i_2\alpha_1}\cdots \mathcal{B}_{i_m\alpha_{m-1}},\tag{1}$$

where $i \in [n_1], \alpha_1, \cdots, \alpha_{m-1} \in [n_3] \times \cdots \times [n_{k+1}].$

Let \mathcal{T} be an order k dimension n tensor, let $x = (x_1, \dots, x_n)^T \in \mathbb{C}^n$ be a column vector of dimension n. Then by (1) $\mathcal{T}x$ is a vector in \mathbb{C}^n whose *i*-th component is as the following

$$(\mathcal{T}x)_i = \sum_{i_2,\dots,i_k=1}^n \mathcal{T}_{ii_2\cdots i_k} x_{i_2} \cdots x_{i_k}.$$
(2)

Let $x^{[k]} = (x_1^k, \dots, x_n^k)^T$. Then (see [2,8]) a number $\lambda \in \mathbb{C}$ is called an eigenvalue of the tensor \mathcal{T} if there exists a nonzero vector $x \in \mathbb{C}^n$ satisfying the following eigenequations

$$\mathcal{T}x^{k-1} = \lambda x^{[k-1]},\tag{3}$$

and in this case, x is called an eigenvector of \mathcal{T} corresponding to eigenvalue λ .

Download English Version:

https://daneshyari.com/en/article/4598991

Download Persian Version:

https://daneshyari.com/article/4598991

Daneshyari.com