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We study the class of mono-weakly 2-hyponormal 2-variable 
weighted shifts T ≡ (T1, T2) (resp. hyponormal with quadrat-
ically hyponormal T1 and T2) with two consecutive equal 
weights in the weight sequence of each of the coordinate 
operators. We show that under natural assumptions on the co-
ordinate operators, the presence of consecutive equal weights 
in T1 and T2 leads to the flatness, in a way that resembles the 
situation for 1-variable weighted shifts.
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1. Introduction

For α ≡ {αk}∞k=0 a bounded sequence of positive real numbers (called weights), let 
Wα ≡ shift (α0, α1, · · · ) : �2(Z+) → �2(Z+) be the associated unilateral weighted shift, 
defined by Wαek := αkek+1 (all k ≥ 0), where {ek}∞k=0 is the canonical orthonormal basis 
in �2(Z+). If αk+1 = αk for all k ≥ 1, Wα is then called flat. The flatness of weighted 
shifts is largely studied in the literature [3,6–10,15,16,19–22,25,27,29], particularly its 
results and techniques are important in the theory of subnormal operators which were 
introduced by Paul R. Halmos in 1950 [24] for the purpose of the study of dilations 
and extensions of operators on a Hilbert space. In [16,21], the authors first introduced 
the flatness for a commuting hyponormal 2-variable weighted shift (T1, T2) which is the 
correct analogue of the flatness for a single weighted shift Wα.

We denote the class of commuting pairs of operators on Hilbert space by C0, the 
class of commuting pairs of subnormal operators on Hilbert space by H0, the class of 
subnormal pairs by H∞, and for an integer k ≥ 1, the class of k-hyponormal pairs in 
H0 by Hk. Clearly, we have H∞ ⊆ · · · ⊆ Hk ⊆ · · · ⊆ H1 ⊆ H0. In [14], the authors 
provided a multivariable analogue of the Bram–Halmos criterion [2,4] for subnormality 
and a matricial characterization of k-hyponormality for multivariable weighted shifts. 
As an application of the main result in [14], the authors built an example which ex-
hibits the gap between (joint) k-hyponormality and (k + 1)-hyponormality for each 
k ≥ 1. However, we still don’t know whether there exists a gap between (jointly) weak 
k-hyponormality and weak (k + 1)-hyponormality in C0 for each k ≥ 1. We say that a 
pair T ≡ (T1, T2) ∈ C0 is weakly k-hyponormal (resp. polynomially hyponormal when 
k = ∞) if (p1(T1, T2), p2(T1, T2)) is hyponormal for all polynomials p1, p2 ∈ C[z, w]
with deg p1, deg p2 ≤ k (cf. [22]). From the definition of the weakly k-hyponormal, it 
seems highly nontrivial to check the weak k-hyponormality of T ∈ C0, even if k = 2. 
We thus introduce the notion of mono-weak k-hyponormality for each k ≥ 1. We say 
that (T1, T2) ∈ C0 is mono-weakly k-hyponormal (resp. mono-polynomially hyponormal
when k = ∞) if p(T1, T2) is hyponormal for all polynomials p ∈ C[z, w] with deg p ≤ k. 
For S, T ∈ B(H), we let [S, T ] := ST − TS and Mk (T ) :=

([
T j∗, T i

])k
i,j=1. We recall 

that T ∈ B(H) is weakly k-hyponormal for each k ≥ 1 if for all a1, · · · , ak ∈ C and 
x ∈ H

〈
Mk (T ) f (k, x) , f (k, x)

〉
≥ 0, (1)

where f (k, x) := (a1x, · · · , akx)t. For T ≡ (T1, T2) ∈ C0, we let

Mk (T1, T2) := ([(T q
2 T

p
1 )∗, Tn

2 T
m
1 ])1≤m+n≤k

1≤p+q≤k
.

Based on (1) and Proposition 5.1 given below, we can see that a pair T ∈ C0 is mono-
weakly k-hyponormal (resp. mono-polynomially hyponormal when k = ∞) if and only
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