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The paper is devoted to the study of annihilator extensions 
of evolution algebras and suggests an approach to classify 
finite-dimensional nilpotent evolution algebras. Subsequently 
nilpotent evolution algebras of dimension up to four are clas-
sified.
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1. Introduction

Evolution algebras were introduced in 2006 by J.P. Tian and P. Vojtechovsky in 
their paper “Mathematical concepts of evolution algebras in non-Mendelian genetics” 
(see [10]). Later on, Tian laid the foundations of evolution algebras in his monograph [11]. 
These algebras present many connections with other mathematical fields including graph 
theory, group theory, Markov chains, dynamical systems, knot theory, 3-manifolds and 
the study of the Riemann-Zeta function (see [11]).

Evolution algebras are in general non-associative and do not belong to any of the 
well-known classes of non-associative algebras such as Lie algebras, alternative algebras, 
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or Jordan algebras. Therefore, the research on these algebras follows different paths 
(see [2–4,8,12]).

A classical problem in study of any class of algebras is to know how many different 
(up to isomorphism) algebras exist for each dimension. In this way in [1,6,7,9], the classi-
fications of nilpotent Jordan algebras, nilpotent Lie superalgebras, nilpotent associative 
algebras and nilpotent Lie algebras of low dimensions were given.

In this paper we study the class of nilpotent evolution algebras. Our aim is to describe 
a method for classifying nilpotent evolution algebras. In [3], the equivalence between 
nilpotent evolution algebras and evolution algebras which are defined by upper triangular 
matrices is proved. In [11], J. Tian defined an evolution algebra associated to any directed 
graph. In [5], A. Elduque and A. Labra considered the reverse direction, a directed graph 
is attached to any evolution algebra and they proved that nilpotency of an evolution 
algebra is equivalent to the nonexistence of oriented cycles in the attached directed 
graph.

The paper is organized as follows. In Section 2, we give some basic concepts about 
evolution algebras. Section 3 is devoted to the description of construction of evolution 
algebras with non-trivial annihilator as annihilator extensions of evolution algebras of 
lower dimensions. In Section 4, we describe a method for classifying nilpotent evolution 
algebras. In Section 5, we classify nilpotent evolution algebras of dimension up to three 
over arbitrary fields. In Section 6, four-dimensional nilpotent evolution algebras are clas-
sified over an algebraic closed field of characteristic not 2 (the charecterstic 2 case will 
be posted on arxiv) and over R.

2. Preliminaries

Definition 2.1. (See [11].) An evolution algebra is an algebra E containing a basis (as a 
vector space) B = {e1, . . . , en} such that eiej = 0 for any 1 ≤ i < j ≤ n. A basis with 
this property is called a natural basis.

Given a natural basis B = {e1, . . . , en} of an evolution algebra E ,

e2
i =

n∑
j=1

αijej

for some scalars αij ∈ F, 1 ≤ i, j ≤ n. The matrix A =
(
αij

)
is the matrix of structural 

constants of the evolution algebra E , relative to the natural basis B.

Definition 2.2. An ideal I of an evolution algebra E is an evolution algebra satisfying 
EI ⊆ I.

Given an evolution algebra E , consider its annihilator

ann (E) := {x ∈ E : xE = 0} .
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