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The cut-norm ||A||C of a real matrix A = (aij)i∈R,j∈S is 
the maximum, over all I ⊂ R, J ⊂ S of the quantity 
| 
∑

i∈I,j∈J aij |. We show that there is an absolute positive 
constant c so that if A is the n by n identity matrix and 
B is a real n by n matrix satisfying ||A − B||C ≤ 1

16 ||A||C , 
then rank(B) ≥ cn. Extensions to denser binary matrices are 
considered as well.

© 2015 Elsevier Inc. All rights reserved.

1. The main results

The cut-norm ||A||C of a real matrix A = (aij)i∈R,j∈S is the maximum, over all I ⊂ R, 
J ⊂ S of the quantity | 

∑
i∈I,j∈J aij |. This concept plays a major role in the work of 

Frieze and Kannan [7] on efficient approximation algorithms for dense graph and matrix 
problems.
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Consider matrices with a set of rows indexed by R and a set of columns indexed by S. 
For I ⊂ R and J ⊂ S, and for a real d, the cut matrix D = CUT (I, J, d) is the matrix 
(dij)i∈R,j∈S defined by dij = d if i ∈ I, j ∈ J and dij = 0 otherwise. A cut-decomposition
of A expresses it in the form

A = D(1) + . . . + D(k) + W,

where the matrices D(i) are cut matrices, and the matrix W = (wij) has a relatively 
small cut-norm.

The authors of [7] proved that any given n by n matrix A with entries in [−1, 1] admits 
a cut-decomposition in which the number of cut matrices is O(1/ε2), and the cut-norm 
of the matrix W is at most εn2. More generally, it is at most εn||A||F , where

||A||F =
√∑

i,j

a2
ij

is the Frobenuis norm of A. The fact that O(1/ε2) is tight is proved in [3]. Suppose we 
wish to approximate sparse {0, 1}-matrices, say, n by n binary matrices with m 1’s, and 
our objective is to get a cut decomposition so that the cut norm of the matrix W is at 
most εm. How large should k be in this case? The case of binary matrices arises naturally 
when considering adjacency matrices of bipartite or general graphs, and the sparse case 
in which m = o(n2) is thus interesting.

The first case to consider, which will turn out to be helpful in the study of the general 
case too, is when A is the n by n identity matrix. Note that in this case the all 0 matrix 
B satisfies ||A −B||C = n, and the constant matrix B′ in which each entry is − 4

5n gives 
||A − B′||C ≤ n/5. Therefore, an approximation up to cut norm 1

5 · n is trivial in this 
case, and can be done by one cut matrix. It turns out that for smaller values of ε, e.g., 
for ε = 1

20 , the required number k of cut matrices jumps to Ω(n).
This is proved in the next theorem. In fact, we prove a stronger result: not only does 

the number of cut matrices in such a cut decomposition have to be linear in n, the rank 
of any good approximation of the identity matrix in the cut norm has to be Ω(n).

Theorem 1.1. There is an absolute positive constant c so that the following holds. Let 
A be the n by n identity matrix, and let B be an arbitrary real n by n matrix so that 
||A −B||C ≤ n

16 . Then the rank of B is at least cn.

Note that if we replace the cut norm ||A||C of A = (aij) by the �∞-norm ||A||∞ =
maxij |aij | then it is known (see [1]) that the minimum possible required rank of an 
ε-approximating matrix in this norm (that is, a matrix B so that ||A − B||∞ ≤ ε||A||∞
(= ε)) is between Ω( 1

ε2 log(1/ε) log n) and O( 1
ε2 log n).

The above can be extended to denser binary matrices, yielding the following more 
general result.
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