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1. Introduction

Some of the most important inequalities, as well as some equalities in complex
numbers admit generalisations in a matrix context. The equality |zw| = |z||w]|, the
triangle inequality |z + w| < |z| + |w| and the arithmetic mean-geometric inequality
lzw| < (|2? + |w|?), are all in evidence. (See [10] and [4] for generalisations of the
second and third to complex matrices.)
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Another such inequality is the Young inequality:
1 1
|zw] < —[z]” + ~|w|? (1)
p q

in which p,q € (1,00) are conjugate exponents. Moreover, equality holds if and only if
2P = Jwl|?.

In what follows, M, (C) denotes the set (the C*-algebra) of all n x n complex ma-
trices. A Hermitian matrix A € M, (C) is called positive semi-definite (resp. positive
definite) if (Az,z) > 0 (resp. (Az,z) > 0) for each z € C™. The set M, (C) of all
positive semi-definite matrices is a closed convex cone in M, (C) and makes the set of
all Hermitian matrices partially ordered: for Hermitian matrices A and B, A < B if and
only if B— A € M, (C).

For a Hermitian matrix A we arrange the eigenvalues of A in non-increasing order
as A (A4) > Aa(A) > -+ > A\ (A). For X € M, (C), | X| stands for the unique positive
square root of X*X. Eigenvalues of |X| are called singular values of X and are also
arranged in non-increasing order as s1(X) > s2(X) > -+ > s,(X).

The Young inequality (1) was extended to complex matrices in the special case p =
g = 2 by Bhatia and Kittaneh in [7] and in the general case by Ando in [1] as follows:

Theorem 1.1. For each pair of complex matrices A and B in M, (C) and each pair of
conjugate exponents p and q in (1,00)

1 1
NAB) < X (SIAP +-|BI7), j=1,2,-,n. (2)
b q
Equivalently, there exists a unitary matriz U such that
U*|AB*|U < —|A|P + —=|B|". (3)
p q

In [9], Hirzallah and Kittaneh proved a refinement of the Young inequality for /2 norms
of matrices. The original version of the inequality was given which was by Bhatia and
Parthasarathy in [5]. Hirzallah and Kittaneh showed that equality holds in (2) if and only
if |A|P = | B|9. Generalisation of (3) to compact operators acting on a complex separable
Hilbert space was established by Erlijman, Farenick and Zeng [8]. Later, Argerami and
Farenick established the case of equality for trace class operators in [2].

Note that Young’s inequality (1) can also be written in the form

e < vlal¥ + (1= v)|w]=F, v € (0,1). (4)
An analytic investigation of the function f(¢) = vt — ¢” on the ray (0,00) shows

that for v > 1, the function f is strictly increasing on (0, 1) and strictly decreasing on
(1,00). Also f attains its maximum (= v — 1) at ¢ = 1. Hence for v > 1 the inequality
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