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We use operator monotone and operator convex functions to 
prove an inverse to the Young inequality for eigenvalues of 
positive definite matrices and then apply it to obtain a ma-
trix inverse Young inequality which can be considered as a 
complement of a result of T. Ando. Also, we give a necessary 
and sufficient condition for the equality.
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1. Introduction

Some of the most important inequalities, as well as some equalities in complex 
numbers admit generalisations in a matrix context. The equality |zw| = |z| |w|, the 
triangle inequality |z + w| ≤ |z| + |w| and the arithmetic mean-geometric inequality 
|zw| ≤ 1

2 (|z|2 + |w|2), are all in evidence. (See [10] and [4] for generalisations of the 
second and third to complex matrices.)
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Another such inequality is the Young inequality:

|zw| ≤ 1
p
|z|p + 1

q
|w|q (1)

in which p, q ∈ (1, ∞) are conjugate exponents. Moreover, equality holds if and only if 
|z|p = |w|q.

In what follows, Mn(C) denotes the set (the C∗-algebra) of all n × n complex ma-
trices. A Hermitian matrix A ∈ Mn(C) is called positive semi-definite (resp. positive 
definite) if 〈Ax, x〉 ≥ 0 (resp. 〈Ax, x〉 > 0) for each x ∈ Cn. The set M+

n (C) of all 
positive semi-definite matrices is a closed convex cone in Mn(C) and makes the set of 
all Hermitian matrices partially ordered: for Hermitian matrices A and B, A ≤ B if and 
only if B −A ∈ M+

n (C).
For a Hermitian matrix A we arrange the eigenvalues of A in non-increasing order 

as λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A). For X ∈ Mn(C), |X| stands for the unique positive 
square root of X∗X. Eigenvalues of |X| are called singular values of X and are also 
arranged in non-increasing order as s1(X) ≥ s2(X) ≥ · · · ≥ sn(X).

The Young inequality (1) was extended to complex matrices in the special case p =
q = 2 by Bhatia and Kittaneh in [7] and in the general case by Ando in [1] as follows:

Theorem 1.1. For each pair of complex matrices A and B in Mn(C) and each pair of 
conjugate exponents p and q in (1, ∞)

λj(|AB∗|) ≤ λj

(1
p
|A|p + 1

q
|B|q

)
, j = 1, 2, · · · , n. (2)

Equivalently, there exists a unitary matrix U such that

U∗|AB∗|U ≤ 1
p
|A|p + 1

q
|B|q. (3)

In [9], Hirzallah and Kittaneh proved a refinement of the Young inequality for l2 norms 
of matrices. The original version of the inequality was given which was by Bhatia and 
Parthasarathy in [5]. Hirzallah and Kittaneh showed that equality holds in (2) if and only 
if |A|p = |B|q. Generalisation of (3) to compact operators acting on a complex separable 
Hilbert space was established by Erlijman, Farenick and Zeng [8]. Later, Argerami and 
Farenick established the case of equality for trace class operators in [2].

Note that Young’s inequality (1) can also be written in the form

|zw| ≤ ν |z| 1
ν + (1 − ν)|w| 1

1−ν , ν ∈ (0, 1). (4)

An analytic investigation of the function f(t) = νt − tν on the ray (0, ∞) shows 
that for ν > 1, the function f is strictly increasing on (0, 1) and strictly decreasing on 
(1, ∞). Also f attains its maximum (= ν − 1) at t = 1. Hence for ν > 1 the inequality 



Download	English	Version:

https://daneshyari.com/en/article/4599015

Download	Persian	Version:

https://daneshyari.com/article/4599015

Daneshyari.com

https://daneshyari.com/en/article/4599015
https://daneshyari.com/article/4599015
https://daneshyari.com/

