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In order to investigate the non-odd-bipartiteness of even 
uniform hypergraphs, starting from a simple graph G, we 
construct a generalized power of G, denoted by Gk,s, which 
is obtained from G by blowing up each vertex into a s-set 
and each edge into a (k − 2s)-set, where s ≤ k/2. When 
s < k/2, Gk,s is always odd-bipartite. We show that Gk, k

2

is non-odd-bipartite if and only if G is non-bipartite, and 
find that Gk, k

2 has the same adjacency (respectively, signless 
Laplacian) spectral radius as G. So the results involving the 
adjacency or signless Laplacian spectral radius of a simple 
graph G hold for Gk, k

2 . In particular, we characterize the 
unique graph with minimum adjacency or signless Laplacian 
spectral radius among all non-odd-bipartite hypergraphs Gk, k

2

of fixed order, and prove that 
√

2 +
√

5 is the smallest limit 
point of the non-odd-bipartite hypergraphs Gk, k

2 . In addition 
we obtain some results for the spectral radii of the weakly 
irreducible nonnegative tensors.
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1. Introduction

Hypergraphs are a generalization of simple graphs. They are really handy to show 
complex relationships found in the real world. A hypergraph G = (V (G), E(G)) is a set 
of vertices, say V (G) = {v1, v2, . . . , vn}, and a set of edges, say E(G) = {e1, e2, . . . , em}
where ej ⊆ V (G). If |ej | = k for each j = 1, 2, . . . , m, then G is called a k-uniform hyper-
graph. In particular, the 2-uniform hypergraphs are exactly the classical simple graphs. 
The degree dv of a vertex v ∈ V (G) is defined as dv = |{ej : v ∈ ej ∈ E(G)}|. A walk W

of length l in G is a sequence of alternate vertices and edges: v0, e1, v1, e2, . . . , el, vl, where 
{vi, vi+1} ⊆ ei for i = 0, 1, . . . , l− 1. If v0 = vl, then W is called a circuit. A walk in G is 
called a path if no vertices or edges are repeated. A circuit in G is called a cycle if no ver-
tices or edges are repeated. The hypergraph G is said to be connected if every two vertices 
are connected by a walk. A hypergraph H is a sub-hypergraph of G if V (H) ⊆ V (G) and 
E(H) ⊆ E(G), and H is a proper sub-hypergraph of G if V (H) � V (G) or E(H) � E(G).

In recent years spectral hypergraph theory has emerged as an important field in 
algebraic graph theory. Let G be a k-uniform hypergraph. The adjacency tensor A =
A(G) = (ai1i2...ik) of G is a kth order n-dimensional symmetric tensor, where

ai1i2...ik =
{ 1

(k−1)! if {vi1 , vi2 , . . . , vik} ∈ E(G);
0 otherwise.

Let D = D(G) be a kth order n-dimensional diagonal tensor, where di...i = dvi for all 
i ∈ [n] := {1, 2, . . . , n}. Then L = L(G) = D(G) − A(G) is the Laplacian tensor of the 
hypergraph G, and Q = Q(G) = D(G) + A(G) is the signless Laplacian tensor of G.

Qi [15] showed that ρ(L(G)) ≤ ρ(Q(G)), and posed a question of identifying the con-
ditions under which the equality holds. Hu et al. [9] proved that if G is connected, then 
the equality holds if and only if k is even and G is odd-bipartite. Here an even uniform 
hypergraph G is called odd-bipartite if V (G) has a bipartition V (G) = V1 ∪ V2 such 
that each edge has an odd number of vertices in both V1 and V2. Such partition will be 
called an odd-bipartition of G. Shao et al. [17] proved a stronger result that the Lapla-
cian H-spectrum (respectively, Laplacian spectrum) and signless Laplacian H-spectrum 
(respectively, signless Laplacian spectrum) of a connected k-uniform hypergraph G are 
equal if and only if k is even and G is odd-bipartite. They also proved that the adjacency 
H-spectrum of G (respectively, adjacency spectrum) is symmetric with respect to the 
origin if and only if k is even and G is odd-bipartite. So, the non-odd-bipartite even 
uniform hypergraphs are more interesting on distinguishing the Laplacian spectrum and 
signless Laplacian spectrum and studying the non-symmetric adjacency spectrum.

Hu, Qi and Shao [10] introduced the cored hypergraphs and the power hypergraphs, 
where the cored hypergraph is one such that each edge contains at least one vertex 
of degree 1, and the kth power of a simple graph G, denoted by Gk, is obtained by 
replacing each edge (a 2-set) with a k-set by adding k− 2 new vertices. These two kinds 
of hypergraphs are both odd-bipartite.



Download English Version:

https://daneshyari.com/en/article/4599032

Download Persian Version:

https://daneshyari.com/article/4599032

Daneshyari.com

https://daneshyari.com/en/article/4599032
https://daneshyari.com/article/4599032
https://daneshyari.com

