

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

L-rays of permutation matrices and doubly stochastic matrices

Geir Dahl

Department of Mathematics, University of Oslo, Norway

ARTICLE INFO

Article history: Received 13 February 2015 Accepted 28 April 2015 Available online 16 May 2015 Submitted by R. Brualdi

MSC: 05B20 15A36

Keywords:
Permutation matrix
Doubly stochastic matrix
Majorization

ABSTRACT

Let M_n be the space of real $n \times n$ matrices. We investigate a linear transformation $\sigma: M_n \to \mathbb{R}^n$, called an L-ray (motivated by X-ray), which is defined in terms of sums of the entries in the blocks of a certain "L-shaped" partition of the positions of a matrix $A \in M_n$. We find descriptions of the image of the classes of permutation matrices and doubly stochastic matrices under this map, and show connections to majorization theory.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let M_n denote the vector space of real $n \times n$ matrices. A matrix in M_n is doubly stochastic (resp. doubly substochastic) if it is componentwise nonnegative and each row and column sum is 1 (resp. at most 1). A subpermutation matrix is a square (0, 1)-matrix with at most one 1 in each row and column. For $1 \le k \le n$ define

E-mail address: geird@math.uio.no.

$$L^{(k)} = \{(k,1), (k,2), \dots, (k,k), (k-1,k), \dots, (1,k)\}\$$

which consists of the first k positions in row k and column k. Then $L^{(1)}, L^{(2)}, \ldots, L^{(n)}$ is a partition of $\{(i,j): 1 \leq i,j \leq n\}$ and $\bigcup_{r=1}^k L^{(r)}$ is the set of positions of the leading $k \times k$ submatrix of an $n \times n$ matrix. For instance, for n=3, $L^{(1)}=\{(1,1)\}$, $L^{(2)}=\{(2,1),(2,2),(1,2)\}$ and $L^{(3)}=\{(3,1),(3,2),(3,3),(2,3),(1,3)\}$.

Let A be a real $n \times n$ matrix. Define

$$\sigma_k(A) = \sum_{(i,j)\in L^{(k)}} a_{ij} \quad (1 \le k \le n)$$

and

$$\sigma(A) = (\sigma_1(A), \sigma_2(A), \dots, \sigma_n(A)). \tag{1}$$

Similarly, we define $\sigma_k^*(A) = \sum_{i,j \leq k} a_{ij}$ $(1 \leq k \leq n)$, and $\sigma^*(A) = (\sigma_1^*(A), \sigma_2^*(A), \dots, \sigma_n^*(A))$. Note that $\sigma_k^*(A)$ is the sum of all entries in the leading principal $k \times k$ submatrix A_k of A. Thus, if A is nonnegative, then $\sigma^*(A) = (\|A_1\|_s, \|A_2\|_s, \dots, \|A_n\|_s)$ where $\|\cdot\|_s$ denotes the sum-norm; the sum of the absolute values of the entries in the matrix, see [11]. Since $\sigma_k^*(A) = \sum_{r=1}^k \sigma_r(A)$, there is a natural isomorphism which maps $\sigma(A)$ into $\sigma^*(A)$ (namely, $(x_1, x_2, \dots, x_n) \to (x_1, x_1 + x_2, \dots, x_1 + \dots + x_n)$). This implies that our results concerning σ may be translated into similar results for σ^* .

We call $\sigma(A)$ the L-ray of A. This defines a linear transformation $\sigma: M_n \to \mathbb{R}^n$, given by $A \to \sigma(A)$. The term L-ray is inspired by the notion of X-ray in area of discrete tomography [9] (see below), and the sets $L^{(k)}$ are shaped like an L (backward). Several results were shown for Toeplitz and Hankel X-rays of permutation matrices in [6]; these X-rays are vectors of dimension 2n-1 defined by summing entries along diagonals or anti-diagonals of a matrix of order n. Moreover, in [2] X-rays of anti-diagonals of permutation matrices were studied; different enumerative results and connections to other combinatorial objects were established.

A main goal in this paper is to investigate the image set

$$\sigma(\mathcal{A}) := \{ \sigma(A) : A \in \mathcal{A} \} \tag{2}$$

for some matrix classes \mathcal{A} in M_n . We call this the L-ray problem. In particular, we are interested in the following such classes \mathcal{A} : (i) \mathbb{P}_n ; the set of permutation matrices of order n, (ii) Ω_n ; the set of doubly stochastic matrices of order n, (iii) \mathbb{P}_n^{sub} (resp. Ω_n^{sub}); the set of $n \times n$ subpermutation (resp. doubly substochastic) matrices, and (iv) subclasses of those above, but with constrained patterns.

Note that $\mathbb{P}_n \subseteq \Omega_n \subseteq \Omega_n^{sub}$, and therefore $\sigma(\mathbb{P}_n) \subseteq \sigma(\Omega_n) \subseteq \sigma(\Omega_n^{sub})$. In general, if \mathcal{A} is a convex set (resp. a polyhedron), then $\sigma(\mathcal{A})$ is also convex (resp. a polyhedron). Therefore $\sigma(\Omega_n^{sub})$ and $\sigma(\Omega_n)$ are polyhedra.

Download English Version:

https://daneshyari.com/en/article/4599035

Download Persian Version:

https://daneshyari.com/article/4599035

<u>Daneshyari.com</u>