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Let R denote the Galois ring of characteristic ps and 
cardinality psh. In this paper, we determine the Smith normal 
forms of alternate matrices over R, compute the number of 
the orbits of n ×n alternate matrices under the group GLn(R)
and the length of each orbit. Moreover, we discuss their 
applications to authentication codes and association schemes.
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1. Introduction

As a generalization of finite fields and rings of residue class modulo a prime power, 
the theory of Galois rings was first developed by Krull [3]. A Galois ring is defined to 
be a finite commutative ring with the identity 1 such that the set of its zero divisors 
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with 0 added forms a principal ideal (p1) for some prime number p. It is well known that 
any two Galois rings of the same characteristic and the same cardinality are isomorphic. 
In this paper, we always use the notation R := GR(ps, psh) to denote any Galois ring of 
characteristic ps and cardinality psh, where s, h are positive integers. Note that R is a 
finite field with ph elements if s = 1, and R is the ring of residue classes of Z modulo its 
ideal psZ if h = 1. By Theorem 14.8 in [6], any element a of R can be written uniquely 
as a = a0 + a1p + · · · + as−1p

s−1, where each ai belongs to Ω := {0, 1, ξ, . . . , ξph−2} and 
ξ is a unit of multiplicative order ph − 1. It follows that the unit group R∗ := {a ∈ R |
a0 �= 0} of R has the size (ph − 1)ph(s−1). By Theorem 14.15 in [6] the principal ideals 
(1), (p), (p2), . . . , (ps−1), (0) are all the ideals of R and (p) is the unique maximal ideal 
of R. It follows that R is a local principal ideal ring.

Let a, b ∈ R. If there is an element c ∈ R such that b = ac, we say that a di-
vides b and denote it by a|b. Let d, b1, b2, . . . , br ∈ R. If d|bi for i = 1, 2, . . . , r, then d is 
called a common divisor of b1, b2, . . . , br. A common divisor d of b1, b2, . . . , br is called 
a greatest common divisor of them if any common divisor d′ of them divides d. Since 
the principal ideals (1), (p), (p2), . . . , (ps−1), (0) are all the ideals of R, there exists some 
i ∈ {0, 1, . . . , s} such that pi is a greatest common divisor of b1, b2, . . . , br, denoted by 
pi := gcd (b1, b2, . . . , br).

Let Mm×n(R) denote the set of all m × n matrices over R. When m = n, we write 
simply Mn(R) for Mn×n(R). A matrix T in Mn(R) is called invertible if the determinant, 
denoted by det (T ), of T is in R∗. The set of n × n invertible matrices over R forms a 
group under matrix multiplication, called the general linear group of degree n over R and 
denoted by GLn(R). A matrix A = (aij) in Mn(R) is called alternate if aij = −aji for 
1 ≤ i �= j ≤ n, and aii = 0 for i = 1, 2, . . . , n. Let Altn(R) be the set of all n ×n alternate 
matrices over R. The matrices A and B in Altn(R) are called cogredient if TATT = B

for some T ∈ GLn(R), where TT is the transpose of T . The group GLn(R) acts on the 
set Altn(R) in the following way:

Altn(R) × GLn(R) → Altn(R)
(A, T ) �→ TATT.

Let 1 ≤ t ≤ n and A ∈ Mn(R). By a t × t minor of A we mean the determinant of a 
t × t submatrix of A. Then there exists some i ∈ {0, 1, . . . , s} such that pi is the greatest 
common divisor of all t × t minors of A, denoted by pi := gcdt (A). For any T ∈ GLn(R), 
we have gcdt (TATT) = gcdt (A).

Wan [5], Wu and Nan [9] studied several Anzahl theorems of n ×n alternate matrices 
over R for s = 1 or h = 1, respectively. In this paper, we focus on Anzahl theorems of 
alternate matrices over the general Galois ring R. The rest of this paper is structured as 
follows. In Section 2, we give some useful lemmas, which are included for later reference. 
In Section 3, we determine the Smith normal forms and compute the number of the 
orbits of n × n alternate matrices under the group GLn(R). In Section 4, we compute 
the length of each orbit of n × n alternate matrices under GLn(R). In Section 5, we 
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