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The extinction probability of the Markovian Binary Tree 
(MBT) is the minimal nonnegative solution of a Quadratic 
Vector Equation (QVE). In this paper, we present a pertur-
bation analysis for the extinction probability of a supercritical 
MBT. We derive a perturbation bound for the minimal non-
negative solution of the QVE, which is a bound on the differ-
ence between the solutions of two nearby equations in terms of 
the perturbation magnitude. A posteriori error bound is also 
given, which is a bound on the distance between an approxi-
mate solution and the real solution, in terms of the residual of 
the approximate solution. Numerical experiments show that 
these bounds are fairly sharp.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We first introduce necessary notation for this paper. For matrices A = [aij ], B =
[bij ] ∈ R

m×n, we write A ≥ B (A > B) if aij ≥ bij (aij > bij) holds for all i, j. For 
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vectors x, y ∈ R
n, we write x ≥ y (x > y) if xi ≥ yi (xi > yi) holds for all i = 1, 2, . . . , n. 

The spectral radius of a square matrix A is denoted by ρ(A). The symbol ‖ · ‖ will be 
used to denote the infinity-norm unless we have a special statement. The column vector 
of all ones is denoted by e, i.e., e = (1, 1, . . . , 1)�. The symbol ⊗ denotes the Kronecker 
product.

In this paper, we consider the perturbation analysis of the extinction probability of 
a Markovian Binary Tree (MBT). MBTs belong to a special class of continuous-time 
Markovian multi-type branching processes [1], which are used to model the growth of 
populations consisting of several types of individuals who may reproduce and die dur-
ing their lifetime. Applications have been found in biology and epidemiology [4,9], and 
telecommunication systems [8,15]. We refer the readers to [2,5,7,10] for a detailed de-
scription of MBTs.

In MBTs, the individuals give birth to only one child at a time and the life of each 
individual is controlled by a Markovian process, called the phase process, on the space 
of transient states {1, 2, . . . , n}. An important issue is the computation of the extinction 
probability of the population. It is shown in [2] that the extinction probability is the 
minimal nonnegative solution (in the componentwise ordering) of the following Quadratic 
Vector Equation (QVE):

x = a + B(x⊗ x), (1.1)

where x = [xi] ∈ R
n is the unknown vector with xi the extinction probability of a 

population starting from an individual in state i, a = [ai] ∈ R
n is the coefficient vector 

of QVE (1.1) with ai the probability that an individual in state i dies out without 
producing offspring, B = [Bi,n(j−1)+k] ∈ R

n×n2 is the coefficient matrix of QVE (1.1)
with Bi,n(j−1)+k the probability that an individual in phase i eventually produces a 
child in state j and the parent switches to phase k after the birth. Using the fact that 
the probabilities of all possible outcomes for an individual in state i must sum to 1, for 
i = 1, 2, · · · , n, we know that the vector e must be a solution of (1.1), i.e.,

e = a + B(e⊗ e). (1.2)

Let

M = B(I ⊗ e + e⊗ I). (1.3)

An MBT is irreducible if the mean progeny matrix M is irreducible, that is if for each 1 ≤
i, j ≤ n, there exists an integer k ≥ 0 such that (Mk)ij > 0. An MBT is called subcritical, 
supercritical, or critical if ρ(M) is strictly less than 1, strictly greater than 1, or equal to 1, 
respectively [1]. In the subcritical and critical cases, the minimal nonnegative solution of 
(1.1) is the vector of all ones e, while in the supercritical case, the minimal nonnegative 
solution x∗ satisfies x∗ ≤ e, x∗ �= e [7]. Hereafter, we will only concentrate on the 
supercritical irreducible MBT.
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