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by idempotents. Since an example of such an algebra is the
matrix algebra M, (B) where n > 2 and B is any unital al-
gebra, this yields answers to questions posed in [4, p. 1492]
MSC: and [7, p. 117].
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1. Introduction

Throughout this paper, let A be a unital associative algebra over F and X be a linear
space over F, where F is a field of characteristic not 2. In an algebra A, we can define
the Jordan product by a o b = ab + ba for each a, b in A.

A is said to be zero product determined if every bilinear mapping ¢ from A x A into
any linear space X satisfying
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¢(a,b) =0, whenever ab =10

can be written as ¢(a,b) = T'(ab), for some linear mapping 7' from A into X.
Similarly A is said to be zero Jordan product determined if every bilinear mapping ¢
from A x A into any linear space X’ satisfying

¢(a,b) =0, whenever aob =0

can be written as ¢(a,b) = T'(a o b), for some linear mapping T from A into X.

We denote by £(.A) the linear span of all idempotents in A, and by J(.A) the subalgebra
of A generated by all idempotents in A.

In [1,3-7], several authors study bilinear mappings through their action on zero prod-
uct or zero Jordan product.

In [3], Bresar shows that if A = J(A), then A is zero product determined. In [5],
Ghahramani proves that if A = £(A), then A is zero Jordan product determined.

In [4], Bresar et al. show that the matrix algebra M, (B) of n x n matrices over a
unital algebra B with % is zero Jordan product determined for every n > 3. They ask
whether the result is true for n = 2.

In Section 2, we improve the results in [3,5] through studying bilinear mappings on
an algebra A and show that A is zero Jordan product determined if A = J(A). As ap-
plications, we affirmatively answer two questions posed in [4, p. 1492] and [7, p. 117].

2. Main results
Theorem 2.1. If ¢ is a bilinear mapping from A x A into X such that
aob=0= ¢(a,b) =0

for all a, b in A, then

1 1
d)(avx) = 5@5(0’1:7 1) + id)(‘rav 1)
for all a in A and x in J(A). Thus A is zero Jordan product determined if A= J(A).
Proof. By the definition of J(A), we know that every z in J(A) can be written as a
linear combination of some elements x1, o, - - -, 2% in J(A) such that zp = p; pi, - - Py

where p;,,Diy, -, Di, are idempotents in A. Since ¢ is bilinear, to show the theorem,
it is sufficient to prove that

1 1
éla,pip2---pn) = §¢(P1p2 ©pna, 1) + §¢(ap1p2 e Pps 1) (2.1)

for all a and idempotents p; in A.
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