Computing the degree of a vertex in the skeleton of acyclic Birkhoff polytopes ${ }^{\text {* }}$

Rosário Fernandes
Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

A R T I C L E I N F O

Article history

Received 9 November 2014
Accepted 6 February 2015
Available online 25 February 2015
Submitted by R. Brualdi

MSC:

15B51
05 C 05
52B12

Keywords:
Birkhoff polytope
Tree
Skeleton
Degree of vertex

Abstract

For a fixed tree T with n vertices the corresponding acyclic Birkhoff polytope $\Omega_{n}(T)$ consists of doubly stochastic matrices having support in positions specified by T (matrices associated with T). The skeleton of $\Omega_{n}(T)$ is the graph whose vertices are the permutation matrices associated with T and two vertices (permutation matrices) A and B are adjacent if and only if $\left(E\left(G_{A}\right) \backslash E\left(G_{B}\right)\right) \cup\left(E\left(G_{B}\right) \backslash E\left(G_{A}\right)\right)$ is the edge set of a nontrivial path, where $E\left(G_{A}\right)$ and $E\left(G_{B}\right)$ are the edge sets of graphs associated with A and B, respectively. We present a formula to compute the degree of any vertex in the skeleton of $\Omega_{n}(T)$. We also describe an algorithm for computing this number. In addition, we determine the maximum degree of a vertex in the skeleton of $\Omega_{n}(T)$, for certain classes of trees, including paths and generalized stars where the branches have equal length.

© 2015 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let $T=(V(T), E(T))$ be a tree with vertex set $V(T)=\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $E(T)=\left\{e_{1}, \ldots, e_{n-1}\right\}$. For each $k, 1 \leq k \leq n-1$, the edge $e_{k}=\left\{v_{i}, v_{j}\right\}$ is simply denoted by $v_{i} v_{j}$ and we say that v_{i} is adjacent to v_{j}. The neighbors of v_{i} are its adjacent vertices. The degree of a vertex v_{i} is the number of its neighbors and is denoted by $d_{T}\left(v_{i}\right)$. An edge $v_{i} v_{j}$ is a pendant edge when v_{i} or v_{j} has degree 1 . A vertex v_{i} is s pendant vertex of the tree when v_{i} has degree 1 . A vertex of T which is not a pendant vertex is called an inner vertex. A path with $n \geq 2$ vertices, P_{n}, is a tree in which $n-2$ vertices have degree 2 and the others have degree 1 . Usually, the path P_{n} is denoted by its vertices. The length of P_{n} is its number of vertices. For more basic definitions and notations of trees, see [3].

A matching in T is a subset $M \subseteq E(T)$ without two edges adjacent in T (edge e_{1} is adjacent to edge e_{2} when they have a common vertex). Let M and M^{\prime} be two matchings in T. A path P in T where edges alternate between being in M and M^{\prime} is called an alternating path (relative to $\left(M, M^{\prime}\right)$). Similarly, a nontrivial path P in T where edges alternate being in M and not in M, is called an M-alternating path. We allow an M-alternating path to consist of a single edge, which is either in M or not in M. The symmetric difference of two sets F_{1} and F_{2} is $F_{1} \Delta F_{2}=\left(F_{1} \backslash F_{2}\right) \cup\left(F_{2} \backslash F_{1}\right)$.

Let $\mathbb{R}^{E(T)}$ be the vector space of functions from $E(T)$ into \mathbb{R}. We write $x \geq 0$ to indicate componentwise nonnegativity $\left(x_{e} \geq 0\right.$ for each $\left.e \in E(T)\right)$. The matching polytope associated with T and denoted by $\mathcal{M}(T)$, is

$$
\mathcal{M}(T)=\left\{x \in \mathbb{R}^{E(T)} ; x \geq 0, \quad \sum_{e \in E\left(v_{i}\right)} x_{e} \leq 1 \quad(i \leq n)\right\}
$$

For these concepts see [11,12].
The vertices of the skeleton, $G(\mathcal{M}(T))$, of $\mathcal{M}(T)$ are the vertices of $\mathcal{M}(T)$ and so, matchings in T. Using a result from [10] the authors of [1] showed that two vertices M and M^{\prime} of $G(\mathcal{M}(T))$ are adjacent if and only if $M \Delta M^{\prime}$ is a nontrivial alternating path.

A real n-by- n matrix is a doubly stochastic matrix if it is a nonnnegative matrix and each row and column sum is $1,[4,5]$. The set of all doubly stochastic matrices of order n is a polytope and is denoted by Ω_{n}. Polytopes and in particular Ω_{n} are studied in many papers $[1,4-8,11]$. Each permutation matrix is an extreme point (vertices) of Ω_{n}. The theorem of Birkhoff asserts that Ω_{n} has no other extreme points, $[2,4,5]$.

The acyclic Birkhoff polytope, $\Omega_{n}(T)$, introduced in [6], is the set of doubly stochastic matrices A such that each positive entry of A is either on the diagonal or in a position that corresponds to an edge of T. The diagonal entries of A correspond to the vertices of T. Each matrix $A \in \Omega_{n}(T)$ is symmetric (see [6]). The acyclic Birkhoff polytope $\Omega_{n}(T)$ is affinely isomorphic (see [6]) to the matching polytope associated with $T, \mathcal{M}(T)$. So, the skeleton of the polytope $\Omega_{n}(T)$, denoted by $G\left(\Omega_{n}(T)\right)$, is the graph whose vertices are the vertices of $\Omega_{n}(T)$ (permutation matrices in $\Omega_{n}(T)$). Two vertices A and B of

https://daneshyari.com/en/article/4599088

Download Persian Version:
https://daneshyari.com/article/4599088

Daneshyari.com

[^0]: This work was partially supported by Fundação para a Ciência e Tecnologia and was done within the activities of the Centro de Estruturas Lineares e Combinatórias.

 E-mail address: mrff@fct.unl.pt.

