Quadratic homogeneous Keller maps of rank two

Kevin Pate, Charles Ching-An Cheng*
Department of Mathematics and Statistics, Oakland University, Rochester, MI, United States

A R T I C L E I N F O

Article history:

Received 13 June 2014
Accepted 6 February 2015
Available online 10 March 2015
Submitted by J.M. Landsberg

$M S C$:

14R10
14R20

Keywords:
Quadratic
Homogeneous
Polynomial map
Keller map
Nilpotent
Strongly nilpotent
Linearly triangularizable

A B S TRACT

Let H be a quadratic homogeneous polynomial map of dimension n over an infinite field in which 2 is invertible such that its Jacobian $J H$ is nilpotent. Meisters and Olech have shown that $J H$ is strongly nilpotent if $n \leq 4$. They also proved that it is not true when $n=5$. We show that if rank $J H \leq 2$ and n arbitrary, then $J H$ is strongly nilpotent. We also give examples to show that this is no longer true for any rank and dimension as long as the rank is greater than 2.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let k be a field and $H=\left(H_{1}, \ldots, H_{n}\right): k^{n} \rightarrow k^{n}$ a polynomial map, i.e. $H(x)=$ $\left(H_{1}(x), \ldots, H_{n}(x)\right)$ where $H_{i} \in k[X]=k\left[X_{1}, \ldots, X_{n}\right]$. The degree of H is defined by $\operatorname{deg} H=\max \left\{\operatorname{deg} H_{i} \mid i=1,2, \ldots, n\right\} . H$ is homogeneous of degree d if each H_{i} is either homogeneous of degree d or equal to zero. A matrix $M \in M_{n}\left(k\left[X_{1}, \ldots, X_{s}\right]\right)$, is strongly

[^0]nilpotent if $M\left(v_{1}\right) M\left(v_{2}\right) \cdots M\left(v_{n}\right)=0$ for any $v_{1}, v_{2}, \ldots, v_{n} \in k^{s}$. Meisters and Olech [8] proved for any quadratic homogeneous map $H: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ that if $J H$ is nilpotent then $J H$ is strongly nilpotent if $n \leq 4$ and the statement is false if $n \geq 5$.

In this paper we prove the following.

Theorem 1. Suppose k is an infinite field with 2 invertible and $H: k^{n} \rightarrow k^{n}$ is a quadratic homogeneous polynomial map such that $J H$ is nilpotent. If $J H \in \mathrm{M}_{n}(k(X))$ has rank at most 2 then JH is strongly nilpotent.

This extends the result of Meisters and Olech [8] when $n=3$. When the field k has characteristic 0 , an anonymous referee has pointed out that this result can be derived from [3] and a proof is given in Appendix A.

A polynomial map F is invertible if there exists a polynomial map G such that $F G=G F=\left(X_{1}, \ldots, X_{n}\right)$. The map F is Keller if the determinant of its Jacobian, $J F=\left(\partial F_{i} / \partial X_{j}\right)$, is a nonzero element of k. By the chain rule for Jacobians, invertible polynomial maps are Keller maps. The famous Jacobian Conjecture states that if k has characteristic 0 then any Keller map is invertible. Wang [11] proved it if $\operatorname{deg} F \leq 2$. Bass, Connel and Wright [1] reduced the conjecture to the case where $F=X+H$ with H homogeneous of degree 3. (Druzkowski [5] has further reduced it to where H is cubic linear.) When H is homogeneous of degree ≥ 2, it can be shown that $F=X+H$ is Keller if and only if $J H$ is nilpotent (see [1] or [12]).

A polynomial map of the form $\left(X_{1}+p_{1}, \ldots, X_{n}+p_{n}\right)$ is lower triangular if each p_{i} is a polynomial in $k\left[X_{1}, \ldots, X_{i-1}\right]$. It is upper triangular if each p_{i} is a polynomial in $k\left[X_{i+1}, X_{i+2}, \ldots, X_{n}\right]$. An upper triangular map can be turned into a lower triangular map, and vice versa, by conjugating it with the invertible linear map $\left(X_{n}, \ldots, X_{1}\right)$. A polynomial map F is triangular if it is either upper or lower triangular. It is linearly triangularizable (LT) if it is linearly conjugate to a triangular map, i.e., there exists an invertible linear map T such that $T^{-1} F T$ is triangular.

When k has characteristic 0 , van den Essen and Hubbers [7] proved that $J H$ is strongly nilpotent if and only if the polynomial map $X+H$ is LT. Thus we may deduce from Theorem 1 the following.

Corollary 2. Suppose k has characteristic 0 and $F=X+H$ is a quadratic homogeneous Keller polynomial map with $\operatorname{rank} J H \leq 2$. Then F is $L T$.

This extends a result of Cheng [4] that all quadratic linear maps of rank 2 are LT.
In Section 2 we prove Theorem 1. In Section 3 we prove a technical lemma which is needed for the proof of Theorem 1. In Section 4 we exhibit examples to show that the conclusion of Theorem 1 is no longer true if the rank of $J H$ is greater than 2 . In Appendix A we provide another proof of Theorem 1 when the field k is algebraically closed with characteristic 0 .

https://daneshyari.com/en/article/4599108

Download Persian Version:

https://daneshyari.com/article/4599108

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: cheng@oakland.edu (C.C.-A. Cheng).

