

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Tight frames for cyclotomic fields and other rational vector spaces

LINEAR

Applications

Tuan-Yow Chien^a, Victor Flynn^b, Shayne Waldron^{a,*}

 ^a Department of Mathematics, University of Auckland, Private Bag 92019, Auckland, New Zealand
^b Mathematical Institute, Oxford University, United Kingdom

ARTICLE INFO

Article history: Received 16 December 2014 Accepted 16 February 2015 Available online 19 March 2015 Submitted by R. Brualdi

MSC: primary 11R18, 15A03, 41A65, 42C15

Keywords: Finite tight frames Vector spaces over the rationals Gramian Canonical coordinates Cayley transform Least squares (minimum norm) solutions Cyclotomic fields

ABSTRACT

Here we consider the construction of tight frames for rational vector spaces. This is a subtle question, because the inner products on \mathbb{Q}^d are not all isomorphic. We show that a tight frame for \mathbb{C}^d can be arbitrarily approximated by a *tight* frame with vectors in $(\mathbb{Q} + i\mathbb{Q})^d$, and hence there are many tight frames for rational inner product spaces. We investigate the "minimal field" for which there is a tight frame with a given Gramian. We then consider the rational vector space given the cyclotomic field $\mathbb{Q}(\omega)$, with ω a primitive *n*-th root of unity. We give a simple formula for the unique inner product which makes the *n*-th roots $1, \omega, \omega^2, \ldots, \omega^{n-1}$ into a tight frame for $\mathbb{Q}(\omega)$. From this, we conclude that the associated "canonical coordinates" have many nice properties, e.g., multiplication in $\mathbb{Q}(\omega)$ corresponds to convolution, which makes them well suited to computation. Along the way, we give a detailed description of the space of Q-linear dependencies between the n-th roots, which includes a cyclically invariant tight frame.

@ 2015 Elsevier Inc. All rights reserved.

* Corresponding author. E-mail address: waldron@math.auckland.ac.nz (S. Waldron).

http://dx.doi.org/10.1016/j.laa.2015.02.021 0024-3795/© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathcal{H} be a *d*-dimensional real or complex inner product space. A finite sequence of vectors $(f_i)_{i \in J}$ in \mathcal{H} is a **tight frame** for \mathcal{H} if (for some A > 0)

$$f = \frac{1}{A} \sum_{j \in J} \langle f, f_j \rangle f_j, \qquad \forall f \in \mathcal{H}.$$
 (1.1)

These generalisations of orthonormal bases have recently found many applications, e.g., in signal analysis [12], quantum information theory [16] and orthogonal polynomials of several variables [19]. One of the key motivations is that for inner product spaces with additional structure it may be possible for a tight frame to have certain desirable properties which it is impossible for a basis to have. In the infinite dimensional setting, this has been played out in the theories of wavelets and Gabor systems [3,13], to construct systems with good time–frequency localisation.

The theory of finite tight frames is still in its foundational stages [4]. There is an ongoing effort to construct tight frames with certain properties. Most notably, a set of d^2 equiangular lines in \mathbb{C}^d [17], i.e., d^2 unit vectors (f_i) in \mathbb{C}^d with

$$|\langle f_j, f_k \rangle| = \frac{1}{\sqrt{d+1}}, \qquad j \neq k.$$

Central to such constructions (Zauner's conjecture, the SIC problem, spherical 2-designs with the maximal number of vectors) is a description of a subfield of \mathbb{C} in which the inner products lie.

The purpose of this paper is to investigate tight frames for inner product spaces where the field \mathbb{F} is a subfield of \mathbb{C} , most notably the rationals $\mathbb{F} = \mathbb{Q}$. This is closely related to the above question of what is the smallest field that a unitary image of a given frame can lie in (so that symbolic calculations can be done). We motivate these questions, and our answers to them, by a careful consideration of the Mercedes-Benz frame (three equally spaced unit vectors in \mathbb{R}^2). Key results and observations include:

- Inner products on Q-vector spaces may not be isomorphic (unlike those for C and R). Nevertheless, a tight frame for a rational inner product space is still determined (up to unitary equivalence) by its Gramian.
- An $n \times n$ matrix Q with entries in a subfield $\mathbb{F} \subset \mathbb{C}$ is the Gramian of a tight frame of n vectors for a d-dimensional inner product space if and only if it is a positive scalar multiple of a rank d orthogonal projection matrix. Such a tight frame can be constructed
 - 1. In an \mathbb{F} -inner product space, by considering the columns of Q.
 - 2. In \mathbb{E}^d , with the Euclidean inner product, where \mathbb{E} is possibly larger than \mathbb{F} , by considering the rows of Q.
- A tight frame for \mathbb{C}^d can be arbitrarily approximated by one in $(\mathbb{Q} + i\mathbb{Q})^d$.

Download English Version:

https://daneshyari.com/en/article/4599113

Download Persian Version:

https://daneshyari.com/article/4599113

Daneshyari.com