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In the random effects model of meta-analysis for heteroge-
neous multidimensional data a canonical representation of
the restricted likelihood function is obtained. This represen-
tation is related to a linear data transform which is based
on the algebraic characteristics of error covariance matrices
which are supposed to commute. The relationship between
the heterogeneity covariance matrix estimators and the mean
effect estimators is explored. It is noted that the sample mean
exhibits the Stein-type phenomenon being an inadmissible es-
timator of the effect size under the quadratic loss when the
number of studies exceeds three.

Published by Elsevier Inc.

1. Introduction: meta-analysis model

One of the important applications of random effects models is meta-analysis where
one has to combine information in multivariate measurements made in several studies
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which commonly exhibit not only non-negligible between-study variability, but also have
different within-study precision.

Consider a model where several independent sources provide the estimates of
q-dimensional parameter θ (representing the treatment effect or the common mean).
Let the i-th study vector estimate of θ be Xi, i = 1, . . . , n. In the random effects model
of meta-analysis

Xi = θ + �i + εi, (1)

where the independent vectors �i represent random between-study effects with zero mean
and some unknown q × q covariance matrix Ξ (which may have rank smaller than q).
If the errors εi are assumed to be independent and normally distributed, εi ∼ N(0, Si),
then Xi ∼ N(θ,Ξ + Si).

This model appears under scenario where each study measures its linear functions
of θ, i.e., when the i-th study data vector consists of ni measurements,

Yi = Bi[θ + �i] + εi. (2)

Here Bi is the known i-th laboratory design matrix having the rank q and the size
ni × q. The meaning of θ, �i and εi remains the same as in (1), and statistics Xi =
(BT

i Bi)−1BT
i Yi (the classical least squares estimators) satisfy this model. Unlike the

general mixed effects model, the condition in (2) is that the random between-study
effect with probability one belongs to the space spanned by columns of Bi. See [9] for
further motivation of (2) and for some examples.

In many applications, e.g. [4,5,8], estimates of the full covariance matrices Si are not
available but estimators Vi of the variances are given. In view of the lack of appropriate
data, simplifying assumptions are to be made. For example, one may impose the condition
that Si = V

1/2
i RV

1/2
i for some given correlation matrix R and a diagonal matrix Vi. Then

the results obtained for several correlation matrices R can be compared (see Section 5).
The assumption made in this work is that all given matrices Si as well as unknown Ξ

commute.
In the setting with known covariance matrices Si’s, the parameters to be estimated

are the matrix Ξ and θ itself. If Ξ is known, the best linear unbiased estimator of θ is

X̃ =
[∑

i

(Si + Ξ)−1
]−1 ∑

i

(Si + Ξ)−1Xi, (3)

so the traditional methods seek to estimate Ξ using a plug-in estimator of θ afterwards.
We discuss some of these traditional estimators in Section 3 where a wider class

of θ-estimators is suggested. This class is motivated by the form of Bayes procedures
and by the representation of the restricted likelihood function derived in Section 2. This
canonical representation makes use of the polynomials determined by the matrices Si,
i = 1, . . . , n.
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