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Partial least squares is a common technique for multivariate 
regression. The procedure is recursive and in each step basis 
vectors are computed for the explaining variables and the 
solution vectors. A linear model is fitted by projection onto 
the span of the basis vectors. The procedure is mathematically 
equivalent to Golub–Kahan bidiagonalization, which is a 
Krylov method, and which is equivalent to a pair of matrix 
factorizations. The vectors of regression coefficients and 
prediction are non-linear functions of the right hand side. 
An algorithm for computing the Frechet derivatives of these 
functions is derived, based on perturbation theory for the 
matrix factorizations. From the Frechet derivative of the 
prediction vector one can compute the number of degrees 
of freedom, which can be used as a stopping criterion for the 
recursion. A few numerical examples are given.
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1. Introduction

Partial least squares regression (PLSR) [1,2] is a frequently applied technique for 
multivariate regression in the case when the explaining variables (predictor variables) are 
highly correlated. It iteratively constructs an orthonormal sequence of latent components 
(basis vectors) from the explaining variables, which have maximal covariance with the 
response variable. In each step of the procedure, the data and the solution vectors are 
projected onto subspaces of low dimension, where a linear model is fitted. PLSR can be 
used as an alternative to principal components regression (PCR), and often a good fit is 
obtained with a model of considerably smaller dimension than with PCR, see, e.g., [3].

The PLS procedure is mathematically equivalent to a Krylov method, Golub–Kahan 
bidiagonalization [4,5]. While the so-called NIPALS variant of PLS [5] constructs the 
basis vectors by successively deflating the data matrix (the predictor variables) and the 
right hand side (the response variable), the Krylov method generates them by a recursion 
without modifying the data matrix, see e.g. [3]. The Krylov recursion is equivalent to a 
pair of matrix factorizations.

A basic problem in PLSR is to determine the “optimal” number of components, i.e. 
to derive a stopping criterion for the recursion. There are two alternatives, essentially. 
The standard approach is to use cross validation. Alternatively, in [6] an information 
criterion is applied and the complexity of the fitted model is defined as the number of 
degrees of freedom (DOF).

Let y ∈ R
m be a vector of observations of the response variable, and X ∈ R

m×n be 
a matrix, whose columns are the observations of the explaining variables. Consider the 
least squares problem

min
β

‖Xβ − y‖, (1)

to which an approximate solution is computed by PLS. Denote the solution after k steps 
of PLS by βk, and the prediction by yk = Xβk. It turns out that yk and βk are non-linear 
functions of y; we write yk = Fk(y) and βk = Hk(y). The number of degrees of freedom 
of the model, Dk, is defined

Dk = 1 + tr
(
∂Fk

∂y

)
= 1 + tr

(
X

∂βk

∂y

)
, (2)

where ∂Fk/∂y is the Frechet derivative of the function. Note that, with ȳ = y + εδy a 
perturbed data vector,

‖yk − ȳk‖ ≤ ε

∥∥∥∥∂F∂y
∥∥∥∥‖δy‖ + O

(
ε2
)
.

Thus the Frechet derivative defines a condition number of the function, which is a mea-
sure of the sensitivity to perturbations in the data.
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