

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Directed strongly regular graphs with rank 5

Dept. of Mathematical Sciences, Aalborg University, Fr. Bajers Vej 7, 9220 Aalborg, Denmark

ARTICLE INFO

Article history: Received 21 May 2014 Accepted 18 March 2015 Available online 2 April 2015 Submitted by R. Brualdi

MSC: 05C50 05E30

Keywords: Directed strongly regular graph Rank of matrix

ABSTRACT

From the parameters (n, k, t, λ, μ) of a directed strongly regular graph (dsrg) A. Duval (1988) [4] showed how to compute the eigenvalues and multiplicities of the adjacency matrix, and thus the rank of the adjacency matrix. For every rational number q, where $\frac{1}{5} \leq q \leq \frac{7}{10}$, there is a feasible (i.e., satisfying Duval's conditions) parameter set for a dsrg with rank 5 and with $\frac{k}{n} = q$.

In this paper we show that there exist a dsrg with such a feasible parameter set only if $\frac{k}{n}$ is $\frac{1}{5}$, $\frac{1}{3}$, $\frac{2}{5}$, $\frac{1}{2}$, $\frac{3}{5}$, or $\frac{2}{3}$. Every dsrg with rank 5 therefore has parameters of a known graph. The proof is based on an enumeration of 5×5 matrices with entries in $\{0, 1\}$.

© 2015 Elsevier Inc. All rights reserved.

LINEAR

lications

CrossMark

1. Introduction

A directed strongly regular graph with parameters (n, k, t, λ, μ) is a k-regular directed graph on n vertices such that every vertex is on t 2-cycles (which may be thought of as undirected edges), and the number of paths of length 2 from a vertex x to a vertex y is λ if there is an edge directed from x to y and it is μ otherwise. Thus the adjacency matrix A satisfies

E-mail address: leif@math.aau.dk.

 $[\]label{eq:http://dx.doi.org/10.1016/j.laa.2015.03.019} 0024-3795 @ 2015 Elsevier Inc. All rights reserved.$

$$A^2 = tI + \lambda A + \mu (J - I - A)$$
 and $AJ = JA = kJ$.

It is usually assumed that 0 < t < k. These graphs were introduced by A. Duval [4], who also showed that the spectrum of A may be computed from the parameters.

In some cases 0 is an eigenvalue of large multiplicity and then the rank of A is small. In [8], we proved that there exists a dsrg with parameters (n, k, t, λ, μ) and with adjacency matrix of rank 3 if and only if the parameters are either (6m, 2m, m, 0, m) or (8m, 4m, 3m, m, 3m), for some integer m, and there exists one with rank 4 if and only if (n, k, t, λ, μ) is either (6m, 3m, 2m, m, 2m) or (12m, 3m, m, 0, m), for an integer m. For rank 3, this was proved independently in [6].

The main theorem in this paper is a characterization of parameters with rank 5.

Theorem 1. There exists a directed strongly regular graph with parameters (n, k, t, λ, μ) and with adjacency matrix of rank 5 if and only if the parameter set is one of the following: (20m, 4m, m, 0, m), (36m, 12m, 5m, 2m, 5m), (10m, 4m, 2m, m, 2m), (16m, 8m, 5m, 3m, 5m), (20m, 12m, 9m, 6m, 9m), or (18m, 12m, 10m, 7m, 10m), for some positive integer m.

For $n \leq 110$, Theorem 1 excludes existence of directed strongly regular graphs with the following parameters: (45, 12, 4, 1, 4), (45, 24, 16, 10, 16), (49, 28, 20, 13, 20), (64, 16, 5, 1, 5), (80, 24, 9, 3, 9), (80, 56, 49, 35, 49), (81, 36, 20, 11, 20), (90, 24, 8, 2, 8), (90, 48, 32, 20, 32), (98, 28, 10, 3, 10) and (98, 56, 40, 26, 40). The problem of existence in these cases was previously unsolved, see [2].

Note that in these results we assume that t < k. A dsrg with t = k, eigenvalue 0 and with rank r is an undirected complete r-partite graph, that exists for every $r \ge 2$. In the following table we list the possible values of $\frac{k}{n}$ for which there exists a dsrg with rank $r \le 5$, including $\frac{r-1}{r}$ that we get when t = k. We see that then the list is symmetric around $\frac{1}{2}$ for each $r \le 5$. It would be interesting to know if this is also true for $r \ge 6$.

Rank	Values of k/n
2	$\frac{1}{2}$
3	$\frac{1}{3}, \frac{1}{2}, \frac{2}{3}$
4	$\frac{1}{4}, \frac{1}{2}, \frac{3}{4}$
5	$\frac{1}{5}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{4}{5}$

For the proof of the *if* part of Theorem 1 we refer to known constructions. Duval [4] proved that if for one of the six families of parameters sets there exists a dsrg for m = 1 then there exists a dsrg for every parameter set in that family. This construction replaces each vertex by a set of m independent vertices, and it works when $t = \mu$. Graphs with parameters (20, 4, 1, 0, 1) and (10, 4, 2, 1, 2) were also constructed by Duval. A dsrg with parameters (20, 7, 4, 3, 2) was constructed in [10]. Its complement has parameters (20, 12, 9, 6, 9). A dsrg with parameters (18, 5, 3, 2, 1) and the complementary

Download English Version:

https://daneshyari.com/en/article/4599197

Download Persian Version:

https://daneshyari.com/article/4599197

Daneshyari.com