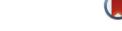
Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Stability of reducing subspaces $\stackrel{\bigstar}{\Rightarrow}$



LINEAR

lications

Gorka Armentia^a, Juan-Miguel Gracia^{b,*}, Francisco-Enrique Velasco^b

 ^a Department of Mathematical Engineering and Computer Science, The Public University of Navarre, Campus de Arrosadía, 31006 Pamplona, Spain
^b Department of Applied Mathematics and Statistics, University of the Basque Country UPV/EHU, Faculty of Pharmacy, 7 Paseo de la Universidad, 01006 Vitoria-Gasteiz, Spain

ARTICLE INFO

Article history: Received 31 March 2014 Accepted 17 October 2014 Available online 30 October 2014 Submitted by I. Spitkovsky

Dedicated to Professor Leiba Rodman on the occasion of his 65th birthday

MSC: 15A22 15A60 47A55 47A15 93B10

Keywords: Rectangular matrix pencils Kronecker canonical form Reducing subspaces

ABSTRACT

We characterize the stability of reducing subspaces of a rectangular matrix pencil of complex matrices $\lambda B - A$, except for the special case in which the pencil has no eigenvalues and only has one row and one column minimal indices and both are different from zero.

© 2014 Elsevier Inc. All rights reserved.

 * Work supported by the Spanish Ministry of Education and Science Project MTM2010-19356-C02-01, and the Basque Government Projects GIC10/169-IT-361-10 and GIC13/IT-710-13.

* Corresponding author.

E-mail addresses: gorka.armentia@unavarra.es (G. Armentia), juanmiguel.gracia@ehu.es (J.-M. Gracia), franciscoenrique.velasco@ehu.es (F.-E. Velasco).

 $\label{eq:http://dx.doi.org/10.1016/j.laa.2014.10.026} 0024-3795 \ensuremath{\oslash} \ensuremath{\bigcirc} \ensuremath{\otimes} \ensuremath{\bigcirc} \ensuremath{\otimes} \ensuremath{\bigcirc} \ensuremath{\otimes} \ensuremath{\otimes}$

1. Introduction

Given two matrices $A, B \in \mathbb{C}^{m \times n}$, we call matrix pencil the first order matrix polynomial $\lambda B - A$. For simplicity, we will denote the set of matrix pencils of the form $\lambda B - A$, with $A, B \in \mathbb{C}^{m \times n}$, by $\mathcal{P}[\lambda]^{m \times n}$. We define the normal rank of a pencil $\lambda B - A \in \mathcal{P}[\lambda]^{m \times n}$, and we denote it by $\operatorname{nrank}(\lambda B - A)$, to be the greatest order of the minors of $\lambda B - A$ that are different from the zero polynomial. If m = n and $\operatorname{nrank}(\lambda B - A) = n$, the pencil $\lambda B - A \in \mathcal{P}[\lambda]^{m \times n}$ is said to be regular. Otherwise, the pencil is said to be singular.

Note by $\mathbb{C}(\lambda)$ the field of rational fractions in λ . If we consider $\lambda B - A$ as a linear map from the vector space $\mathbb{C}(\lambda)^n$ into $\mathbb{C}(\lambda)^m$, both over the field $\mathbb{C}(\lambda)$, we have

$$\operatorname{nrank}(\lambda B - A) = \dim_{\mathbb{C}(\lambda)} \operatorname{Im}(\lambda B - A),$$

(see [4]). We define the nullity of $\lambda B - A$ by $\nu(\lambda B - A) := \dim_{\mathbb{C}(\lambda)} \operatorname{Ker}(\lambda B - A)$. From

$$n = \dim_{\mathbb{C}(\lambda)} \operatorname{Ker}(\lambda B - A) + \dim_{\mathbb{C}(\lambda)} \operatorname{Im}(\lambda B - A),$$
$$\nu(\lambda B - A) = n - \operatorname{nrank}(\lambda B - A).$$

As usual we identify a matrix $M \in \mathbb{C}^{m \times n}$ with the linear map $x \mapsto Mx$ from $\mathbb{C}^n \equiv \mathbb{C}^{n \times 1}$ into $\mathbb{C}^m \equiv \mathbb{C}^{m \times 1}$. Let \mathcal{N} be a subspace of \mathbb{C}^n , we define $M(\mathcal{N})$ as the subspace of \mathbb{C}^m formed by all matrix products Mx with $x \in \mathcal{N}$. Van Dooren proved that

$$\dim(A(\mathcal{N}) + B(\mathcal{N})) \ge \dim \mathcal{N} - \nu(\lambda B - A), \tag{1}$$

where $A(\mathcal{N}) + B(\mathcal{N})$ is the sum of these subspaces of \mathbb{C}^m . See [17, Eq. (2.16) on page 63 and in the line following (2.25a) and (2.25b) on page 65]. In the case the equality holds in (1), the subspace \mathcal{N} is called a *reducing subspace* for the pencil (see [17]) or, equivalently, that \mathcal{N} is a $(\lambda B - A)$ -*reducing subspace*. Observe that if the pencil is regular then $\nu(\lambda B - A) = 0$. So, in this case \mathcal{N} is a reducing subspace if and only if dim $(A(\mathcal{N}) + B(\mathcal{N})) = \dim \mathcal{N}$. These reducing subspaces are also called *deflating subspaces* for regular pencils (see [16]). In order to simplify here on, we will denote by $(\lambda B - A)(\mathcal{N})$ the subspace $A(\mathcal{N}) + B(\mathcal{N})$.

We use the operator norm induced by the Euclidean norms on \mathbb{C}^m and \mathbb{C}^n , also called the spectral norm,

$$||M|| := \max_{\substack{x \in \mathbb{C}^n \\ ||x||_2 = 1}} ||Mx||_2.$$

Download English Version:

https://daneshyari.com/en/article/4599219

Download Persian Version:

https://daneshyari.com/article/4599219

Daneshyari.com