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We characterize the stability of reducing subspaces of a 
rectangular matrix pencil of complex matrices λB−A, except 
for the special case in which the pencil has no eigenvalues and 
only has one row and one column minimal indices and both 
are different from zero.
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1. Introduction

Given two matrices A, B ∈ C
m×n, we call matrix pencil the first order matrix poly-

nomial λB − A. For simplicity, we will denote the set of matrix pencils of the form 
λB − A, with A, B ∈ C

m×n, by P[λ]m×n. We define the normal rank of a pencil 
λB − A ∈ P[λ]m×n, and we denote it by nrank(λB − A), to be the greatest order 
of the minors of λB − A that are different from the zero polynomial. If m = n and 
nrank(λB −A) = n, the pencil λB −A ∈ P[λ]m×n is said to be regular. Otherwise, the 
pencil is said to be singular.

Note by C(λ) the field of rational fractions in λ. If we consider λB − A as a linear 
map from the vector space C(λ)n into C(λ)m, both over the field C(λ), we have

nrank(λB −A) = dimC(λ) Im(λB −A),

(see [4]). We define the nullity of λB −A by ν(λB −A) := dimC(λ) Ker(λB −A). From

n = dimC(λ) Ker(λB −A) + dimC(λ) Im(λB −A),

ν(λB −A) = n− nrank(λB −A).

As usual we identify a matrix M ∈ C
m×n with the linear map x �→ Mx from Cn ≡ C

n×1

into Cm ≡ C
m×1. Let N be a subspace of Cn, we define M(N ) as the subspace of Cm

formed by all matrix products Mx with x ∈ N . Van Dooren proved that

dim
(
A(N ) + B(N )

)
≥ dimN − ν(λB −A), (1)

where A(N ) + B(N ) is the sum of these subspaces of Cm. See [17, Eq. (2.16) on page 
63 and in the line following (2.25a) and (2.25b) on page 65]. In the case the equality 
holds in (1), the subspace N is called a reducing subspace for the pencil (see [17]) or, 
equivalently, that N is a (λB−A)-reducing subspace. Observe that if the pencil is regular 
then ν(λB−A) = 0. So, in this case N is a reducing subspace if and only if dim(A(N ) +
B(N )) = dimN . These reducing subspaces are also called deflating subspaces for regular 
pencils (see [16]). In order to simplify here on, we will denote by (λB−A)(N ) the subspace 
A(N ) + B(N ).

We use the operator norm induced by the Euclidean norms on Cm and Cn, also called 
the spectral norm,

‖M‖ := max
x∈C

n

‖x‖2=1

‖Mx‖2.
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