The dimension of magic squares over fields of characteristics two and three

Wooseok Jung, Jon-Lark Kim ${ }^{*, 1}$, Yeonho Kim, Kisun Lee
Department of Mathematics, Sogang University, Seoul, 121-742, South Korea

A R T I C L E I N F O

Article history:

Received 26 August 2014
Accepted 14 January 2015
Available online 13 February 2015
Submitted by R. Brualdi

MSC:

05B15
05B20

Keywords:
Magic squares
Matrices
Vector spaces

Abstract

Hou et al. [4] have studied various spaces of magic squares over a field F and determined their dimensions. However, they left one open question unsolved, namely, if the characteristic of F is 2 or 3 , exactly which n and k make $\mathcal{M}_{n, k}(1)$ nonempty, where $\mathcal{M}_{n, k}(1)$ denotes the set of all $n \times n$ matrices over F whose row sums, column sums, k diagonal sums, and k antidiagonal sums are all 1 . We solve this completely.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

A magic square is an $n \times n$ array of numbers whose rows, columns and the two main diagonals all have the same sum. The study of magic squares has a very old history. The first magic square is known to be found in a Chinese literature, back in the pre-Christ

[^0]era, and this spread from China to India and then to the Arab countries. From Arab countries, the magic squares were introduced to Europe [1,2]. Since the time when the magic squares were recognized as one of the mathematical areas, there have been a lot of studies about this interesting subject [1,3-8].

In this paper, we deal with magic squares over a field. A magic square of size n and weight d over a field F is a matrix $\left(a_{i j}\right)(1 \leq i, j \leq n)$ with entries in F satisfying the following conditions:

$$
\begin{array}{lr}
\sum_{j=1}^{n} a_{i j}=d & \text { for all } 1 \leq i \leq n \text { (row sums) } \\
\sum_{i=1}^{n} a_{i j}=d & \text { for all } 1 \leq j \leq n \text { (column sums) } \\
\sum_{i-j=0} a_{i j}=d & \\
\sum_{i+j=n+1} a_{i j}=d & \text { (diagonal sum) } \\
&
\end{array}
$$

where $n \in \mathbb{N}$ and $d \in F$. The set of all magic squares of size n over a field F forms a vector space. In [7], Small found the dimension of the vector space of all magic squares of size n. In fact, the same result was founded in $[3,5,6,8]$ in different ways.

In [4], the authors generalized the concept of the magic square over a field in the following manner. Let F be a field, $d \in F, n \in \mathbb{N}$, and $0 \leq k \leq n$. Let $\mathcal{M}_{n, k}(d)$ be the set of all $n \times n$ matrices $\left(a_{i j}\right)(1 \leq i, j \leq n)$ with entries in F satisfying the following conditions:

$$
\begin{array}{ll}
r_{i}:=\sum_{j=1}^{n} a_{i j}=d & \text { for all } 1 \leq i \leq n \text { (row sums) } \\
c_{j}:=\sum_{i=1}^{n} a_{i j}=d & \text { for all } 1 \leq j \leq n \text { (column sums) } \\
d_{l}:=\sum_{i-j=-l+1} a_{i j}=d & \text { for all } 1 \leq l \leq k \text { (diagonal sums) if } k \geq 1 \\
a d_{l}:=\sum_{i+j=-l+2} a_{i j}=d & \text { for all } 1 \leq l \leq k \text { (antidiagonal sums) if } k \geq 1
\end{array}
$$

where the subscripts are taken modulo n. For example, d_{l} and $a d_{l}$ are described as follows.

https://daneshyari.com/en/article/4599231

Download Persian Version:

https://daneshyari.com/article/4599231

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: metapara@naver.com (W. Jung), jlkim@sogang.ac.kr (J.-L. Kim), yho0922@sogang.ac.kr (Y. Kim), tomatoapple@naver.com (K. Lee).
 ${ }^{1}$ J.-L. Kim was supported by Basic Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2013R1A1A2005172).

