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Hou et al. [4] have studied various spaces of magic squares over 
a field F and determined their dimensions. However, they left 
one open question unsolved, namely, if the characteristic of F
is 2 or 3, exactly which n and k make Mn,k(1) nonempty, 
where Mn,k(1) denotes the set of all n × n matrices over F
whose row sums, column sums, k diagonal sums, and k an-
tidiagonal sums are all 1. We solve this completely.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

A magic square is an n × n array of numbers whose rows, columns and the two main 
diagonals all have the same sum. The study of magic squares has a very old history. The 
first magic square is known to be found in a Chinese literature, back in the pre-Christ 
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era, and this spread from China to India and then to the Arab countries. From Arab 
countries, the magic squares were introduced to Europe [1,2]. Since the time when the 
magic squares were recognized as one of the mathematical areas, there have been a lot 
of studies about this interesting subject [1,3–8].

In this paper, we deal with magic squares over a field. A magic square of size n and 
weight d over a field F is a matrix (aij) (1 ≤ i, j ≤ n) with entries in F satisfying the 
following conditions:

n∑
j=1

aij = d for all 1 ≤ i ≤ n (row sums)

n∑
i=1

aij = d for all 1 ≤ j ≤ n (column sums)

∑
i−j=0

aij = d (diagonal sum)

∑
i+j=n+1

aij = d (antidiagonal sum)

where n ∈ N and d ∈ F . The set of all magic squares of size n over a field F forms a 
vector space. In [7], Small found the dimension of the vector space of all magic squares 
of size n. In fact, the same result was founded in [3,5,6,8] in different ways.

In [4], the authors generalized the concept of the magic square over a field in the 
following manner. Let F be a field, d ∈ F , n ∈ N, and 0 ≤ k ≤ n. Let Mn,k(d) be the 
set of all n × n matrices (aij) (1 ≤ i, j ≤ n) with entries in F satisfying the following 
conditions:

ri :=
n∑

j=1
aij = d for all 1 ≤ i ≤ n (row sums)

cj :=
n∑

i=1
aij = d for all 1 ≤ j ≤ n (column sums)

dl :=
∑

i−j=−l+1

aij = d for all 1 ≤ l ≤ k (diagonal sums) if k ≥ 1

adl :=
∑

i+j=−l+2

aij = d for all 1 ≤ l ≤ k (antidiagonal sums) if k ≥ 1

where the subscripts are taken modulo n. For example, dl and adl are described as 
follows.
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