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1. Introduction

An n × n real matrix J is diagonally dominant if

Δi(J) := |Jii| −
∑
j �=i

|Jij | ≥ 0, for i = 1, . . . , n.

A particularly interesting case is when Δi(J) = 0 for all i; we call such matrices di-
agonally balanced. Irreducible, diagonally dominant matrices are always invertible, and 
such matrices arise often in theory and applications. In this Note we study bounds on 
the determinant of symmetric diagonally dominant matrices that have positive entries. 
These matrices are always positive definite (e.g., by Lemma 2.1).

It is classical that the determinant of a positive semidefinite matrix A is bounded 
above by the product of its diagonal entries:

0 ≤ det(A) ≤
n∏

i=1
Aii.

This well-known result is sometimes called Hadamard’s inequality [5, Theorem 7.8.1]. 
A lower bound of this form, however, is not possible without additional assumptions. 
Surprisingly, there is such an inequality when J is diagonally dominant with positive 
entries.

Theorem 1.1. Let n ≥ 3, and let J be an n × n symmetric diagonally dominant matrix 
with off-diagonal entries m ≥ Jij ≥ � > 0. Then, the following inequality holds:

det(J)∏n
i=1 Jii

≥
(

1 − 1
2(n− 2)

√
m

�

(
1 + m

�

))n−1

→ exp
(
−1

2

√
m

�

(
1 + m

�

))
as n → ∞.

The result above was discovered in an attempt to prove the following difficult norm 
inequality [4]. Let S = (n − 2)In + 1n1�

n be the diagonally balanced matrix whose 
off-diagonal entries are all equal to 1 (In is the n × n identity matrix and 1n is the 
n-dimensional column vector consisting of all ones).

Theorem 1.2. (See [4].) Let n ≥ 3. For any symmetric diagonally dominant matrix J
with Jij ≥ � > 0, we have

∥∥J−1∥∥
∞ ≤ 1

�

∥∥S−1∥∥
∞ = 3n− 4

2�(n− 2)(n− 1) .

Moreover, equality is achieved if and only if J = �S.
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