

Contents lists available at ScienceDirect

# Linear Algebra and its Applications



www.elsevier.com/locate/laa

# Helly type theorems for the sum of vectors in a normed plane



Imre Bárány <sup>a,b</sup>, Jesús Jerónimo-Castro <sup>c,\*</sup>

- <sup>a</sup> Rényi Institute of Mathematics, Hungarian Academy of Sciences, PO Box 127, 1364 Budapest, Hungary
- <sup>b</sup> Department of Mathematics, University College London, Gower Street, London WC1E 6BT, England, United Kingdom
- c Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, C.P. 76010, Querétaro, Mexico

#### ARTICLE INFO

Article history: Received 2 October 2013 Accepted 17 November 2014 Available online 1 December 2014 Submitted by R. Brualdi

MSC: 52A10

52A35 52A40

Keywords: Unit vectors Helly type theorem Centrally symmetric sets Normed planes

#### ABSTRACT

The main results here are two Helly type theorems for the sum of (at most) unit vectors in a normed plane. Also, we give a new characterization of centrally symmetric convex sets in the plane.

© 2014 Elsevier Inc. All rights reserved.

### 1. Main results

This paper is about the sum of vectors in a normed plane. We fix a norm  $\| \cdot \|$  in  $\mathbb{R}^2$  whose unit ball is B; so B is a 0-symmetric convex body. There are some interesting

<sup>\*</sup> Corresponding author.

E-mail addresses: barany@renyi.hu (I. Bárány), jesusjero@hotmail.com (J. Jerónimo-Castro).

results about sums of unit vectors in normed planes. For instance, it is proved by Swanepoel in [5] (and reproved later in [1]) that for every subset  $V = \{v_1, \ldots, v_n\} \subset B$  of unit vectors, with n an odd number, we may choose numbers  $\epsilon_1, \epsilon_2, \ldots, \epsilon_n$  from  $\{1, -1\}$  such that  $\|\sum_{v_i \in V} \epsilon_i v_i\| \le 1$ . This time we are interested in unit vectors whose sum has length at least 1.

We write  $u \cdot v$  for the usual scalar product of  $u, v \in \mathbb{R}^2$  and [n] for the set  $\{1, 2, \dots, n\}$ . Here comes our first result.

**Theorem 1.** Assume  $n \geq 3$  is an odd integer and  $V = \{v_1, v_2, \dots, v_n\} \subset \mathbb{R}^2$  is a set of unit vectors. If  $u \cdot v_i \geq 0$  for every  $i \in [n]$  with a suitable non-zero vector  $u \in \mathbb{R}^2$ , then

$$||v_1 + v_2 + \dots + v_n|| \ge 1.$$

Here and in what follows we can assume that V is a multiset, that is,  $v_i = v_j$  can happen even if  $i \neq j$ . Perhaps one should think of V as a sequence of n vectors from  $\mathbb{R}^2$ .

In accordance to the celebrated Helly's theorem (see [3]), results of the type "if every m members of a family of objects have property P then the entire family has the property P" are called Helly-type theorems. Our main results are two unusual Helly type theorems whose proof uses Theorem 1. For information about Helly type results the reader may consult [4].

**Theorem 2.** Assume  $n \geq 3$  is an odd integer and  $V = \{v_1, v_2, \dots, v_n\} \subset \mathbb{R}^2$  is a set of unit vectors. If the sum of any three of them has norm at least 1, then

$$||v_1 + v_2 + \dots + v_n|| \ge 1.$$

**Theorem 3.** Assume  $n \geq 3$  is an odd integer and  $V = \{v_1, v_2, \dots, v_n\} \subset B$ . If the sum of any three elements of V has norm larger than 1, then

$$||v_1 + v_2 + \dots + v_n|| > 1.$$

To our surprise Theorem 3 fails in the following form: If  $V \subset B$ , |V| is odd, and the sum of any three of its elements has norm at least 1, then  $||v_1 + v_2 + ... + v_n|| \ge 1$ . The example is with the max norm and the vectors are  $v_1 = (1,1)$ ,  $v_2 = (-1,1)$ , and  $v_3 = v_4 = v_5 = (0,-1/2)$ . This is also an example showing that Theorem 2 does not hold if we require  $V \subset B$  instead of  $||v_i|| = 1$  for all i.

Note that in these theorems n has to be odd. Indeed, let  $w_1$  and  $w_2$  be two antipodal unit vectors. Set n=2k,  $v_1=\ldots=v_k=w_1$  and  $v_{k+1}=\ldots=v_n=w_2$ . The conditions of Theorems 1 and 2 are satisfied (except that n is even now) but  $\|v_1+v_2+\ldots+v_n\|=0$ . A minor modification of this example shows that n has to be odd in Theorem 3 as well. Namely, let the segment  $[z_1,z_2]$  be a Euclidean diameter of B, and choose  $w_1, w_2$  very close to  $z_1, z_2$  so that  $w_1+w_2$  has norm <1/k and is orthogonal to  $z_1$ . This is clearly possible. Then with  $n=2k, v_1=\ldots=v_k=w_1$  and  $v_{k+1}=\ldots=v_n=w_2$  the conditions of Theorem 3 are satisfied but  $\sum_1^n v_i \in B$ .

## Download English Version:

# https://daneshyari.com/en/article/4599241

Download Persian Version:

https://daneshyari.com/article/4599241

Daneshyari.com