On the images of Lie polynomials evaluated on Lie algebras ${ }^{\text {sh}}$

Benjamin E. Anzis ${ }^{\text {a }}$, Zachary M. Emrich ${ }^{\mathrm{b}, *}$, Kaavya G. Valiveti ${ }^{\mathrm{c}}$
${ }^{\text {a }}$ University of Idaho, United States
${ }^{\text {b }}$ Kent State University, United States
${ }^{\text {c }}$ University of California, Berkeley, United States

A R T I C L E I N F O

Article history:

Received 1 August 2014
Accepted 11 November 2014
Available online 2 December 2014
Submitted by M. Bresar
$M S C$:
primary 16S50
secondary 17B60

Keywords:
Lie algebra
Multilinear Lie polynomial

Abstract

We describe the images of multilinear Lie polynomials of degrees 3 and 4 evaluated on $\mathfrak{s u}(n)$ and $\mathfrak{s o}(n)$. © 2014 Elsevier Inc. All rights reserved.

1. Introduction

Recently there has been much interest $[4,7,9,12]$ in a long-standing conjecture attributed to Lvov and Kaplansky regarding the images of multilinear polynomials (cf. [7]): "Let f be a multilinear polynomial over a field F. Then the set of values of f on the matrix algebra $M_{n}(F)$ is a vector space". Classical results of Shoda [10] and of Albert

[^0]and Muckenhoupt [1] prove the conjecture for multilinear Lie polynomials of degree 2, and results of Špenko prove it for multilinear Lie polynomials of degrees 3 and 4.

A natural variation of the Lvov-Kaplansky conjecture is "Let f be a multilinear Lie polynomial over a field F. Then the set of values of f on classical Lie algebras is a vector space". For classical Lie algebras, Brown [3] proved an analogue of Shoda's result. In this paper, we prove this conjecture for multilinear Lie polynomials of degrees 3 and 4 evaluated on the Lie algebras $\mathfrak{s u}(n)$ of traceless skew-Hermitian matrices and $\mathfrak{s o}(n)$ of skew-symmetric matrices. Additionally, we prove the conjecture for degree 3 multilinear Lie polynomials evaluated on the Lie algebra $\mathfrak{s p}(2 n)$ of Hamiltonian matrices.

The proofs for degree 3 are relatively straightforward. In the case of degree 4, we followed Špenko's ideas; however, to cover some special cases her result relied on [11, Theorem 1], which is not applicable in our situation. For $\mathfrak{s u}(n)$, we use the well-known fact that any skew-Hermitian matrix is unitarily similar to a diagonal skew-Hermitian matrix. For $\mathfrak{s o}(n)$, we rely on a highly nontrivial result on normal forms for skew-symmetric matrices by Djokovic, Rietsch, and Zhao [5].

All results in this paper are presented using the language of linear algebra to make the results accessible to a wider audience.

2. Preliminaries

Definition 1. Let $M, N \in M_{n}(\mathbb{C})$. Then, the commutator of M and N is

$$
[M, N]=M N-N M
$$

We now introduce notation for the Lie algebras that we consider. Here $\mathfrak{s u}(n)$ denotes the (real) Lie algebra of traceless $n \times n$ skew-Hermitian matrices over \mathbb{C} and $\mathfrak{s o}(n)$ the (complex) Lie algebra of $n \times n$ skew-symmetric matrices over \mathbb{C}.

We denote the Cartan subalgebra

$$
\left\{D \in \mathfrak{s u}(n) \mid D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-1},-\sum_{k=1}^{n-1} \lambda_{k}\right)\right\}
$$

of $\mathfrak{s u}(n)$ by $H(\mathfrak{s u}(n))$ and the set of zero-diagonal elements of $\mathfrak{s u}(n)$ by $E(\mathfrak{s u}(n))$. Note that $\mathfrak{s u}(n)=H(\mathfrak{s u}(n)) \oplus E(\mathfrak{s u}(n))$.

We denote by $H(\mathfrak{s o}(n))$ the Cartan subalgebra of $\mathfrak{s o}(n)$ consisting of all skewsymmetric block diagonal matrices; if $n=2 k$, these matrices are of the form

https://daneshyari.com/en/article/4599242

Download Persian Version:
https://daneshyari.com/article/4599242

Daneshyari.com

[^0]: 4) The authors are supported in part by the NSF, grant \#1156798.

 * Corresponding author.

 E-mail address: zemrich@kent.edu (Z.M. Emrich).

