

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Multiplicative Lidskii's inequalities and optimal perturbations of frames [☆]

Pedro G. Massey a,b, Mariano A. Ruiz a,b,*, Demetrio Stojanoff a,b

a Depto. de Matemática, FCE-UNLP, La Plata, Argentina

ARTICLE INFO

Article history: Received 29 August 2014 Accepted 5 December 2014 Available online 29 December 2014 Submitted by R. Brualdi

MSC: 42C15 15A60

Keywords:
Frames
Perturbation of frames
Majorization
Lidskii's inequality
Convex potentials

ABSTRACT

In this paper we study two design problems in frame theory: on the one hand, given a fixed finite frame $\mathcal{F} = \{f_i\}_{i \in \mathbb{I}_n}$ for \mathbb{C}^d we compute those dual frames \mathcal{G} of \mathcal{F} that are optimal perturbations of the canonical dual frame for \mathcal{F} under certain restrictions on the norms of the elements of \mathcal{G} . On the other hand, we compute those $V \cdot \mathcal{F} = \{Vf_j\}_{j \in \mathbb{I}_n}$ for invertible operators V which are close to the identity – that are optimal perturbations of \mathcal{F} . That is, we compute the optimal perturbations of \mathcal{F} among frames $\mathcal{G} = \{q_i\}_{i \in \mathbb{I}_n}$ that have the same linear relations as \mathcal{F} . In both cases, optimality is measured with respect to submajorization of the eigenvalues of the frame operators. Hence, our optimal designs are minimizers of a family of convex potentials that include the frame potential and the mean squared error. The key tool for these results is a multiplicative analogue of Lidskii's inequality in terms of log-majorization and a characterization of the case of equality.

© 2014 Elsevier Inc. All rights reserved.

^b IAM-CONICET, Argentina

 $^{^{\}diamond}$ Partially supported by CONICET (PIP 0435/10) and Universidad Nacional de La Plata (UNLP 11X681).

^{*} Corresponding author.

E-mail addresses: massey@mate.unlp.edu.ar (P.G. Massey), mruiz@mate.unlp.edu.ar (M.A. Ruiz), demetrio@mate.unlp.edu.ar (D. Stojanoff).

1. Introduction

A finite frame for \mathbb{C}^d is a sequence $\mathcal{F} = \{f_j\}_{j \in \mathbb{I}_n}$ that spans \mathbb{C}^d , where $\mathbb{I}_n = \{1, \ldots, n\}$ (for a detailed exposition on frames and several recent research topics within this theory see [8,9] and the references therein). Given a frame $\mathcal{F} = \{f_j\}_{j \in \mathbb{I}_n}$, a sequence $\mathcal{G} = \{g_j\}_{j \in \mathbb{I}_n}$ is called a dual frame for \mathcal{F} if for every $f \in \mathbb{C}^d$ the following reconstruction formulas hold:

$$f = \sum_{j \in \mathbb{I}_n} \langle f, g_j \rangle f_j$$
 and $f = \sum_{j \in \mathbb{I}_n} \langle f, f_j \rangle g_j$.

Hence, frames provide a (possibly redundant) linear-encoding scheme for vectors in \mathbb{C}^d . Let $\mathcal{F} = \{f_j\}_{j \in \mathbb{I}_n}$ be a frame for \mathbb{C}^d and let $\mathcal{D}(\mathcal{F})$ denote the set of dual frames for \mathcal{F} . There is a distinguished dual called the canonical dual of \mathcal{F} , denoted $\mathcal{F}^\# \in \mathcal{D}(\mathcal{F})$, which is a natural choice in several ways. But in case n > d it is well known that $\mathcal{D}(\mathcal{F})$ has a rich structure (this last fact is one of the main advantages of frames over bases $\mathcal{B} = \{v_j\}_{i \in \mathbb{I}_d}$ for which $\mathcal{D}(\mathcal{B})$ becomes a singleton). Thus, in applied situations, the structure of $\mathcal{D}(\mathcal{F})$ can be exploited to obtain numerically stable encoding-decoding schemes derived from the dual pair $(\mathcal{F}, \mathcal{G})$, for some choice of dual frame $\mathcal{G} \in \mathcal{D}(\mathcal{F})$ beyond $\mathcal{F}^\#$; this is the starting point of the so-called (optimal) design problems for dual frames (see [13,15,17-19]).

Another research topic in frame theory is the design of (optimal) stable configurations of vectors (frames) under certain restrictions. Typically, the stability of a frame \mathcal{F} is measured in terms of the spread the eigenvalues of the positive semidefinite operator $S_{\mathcal{F}} = \sum_{j \in \mathbb{I}_n} f_j \otimes f_j$. One of the most important examples of such a measure is the frame potential of \mathcal{F} , denoted by $FP(\mathcal{F})$, introduced in [5]; explicitly, for a sequence $\mathcal{F} = \{f_j\}_{j \in \mathbb{I}_n}$ then

$$\operatorname{FP}(\mathcal{F}) = \sum_{j,k \in \mathbb{I}_n} \left| \langle f_j, f_k \rangle \right|^2 = \operatorname{tr}(S_{\mathcal{F}}^2).$$

In [5,7] it is shown that minimizers of the frame potential, within convenient sets of frames, have many nice structural features and are optimal in several ways. Recently, there has also been interest in the so-called mean squared error of \mathcal{F} , denoted $MSE(\mathcal{F})$, given by $MSE(\mathcal{F}) = tr(S_{\mathcal{F}}^{-1})$ (see [11,16,20]).

It turns out that there is a structural measure of optimality, called sub-majorization, that allows to deal with both the frame potential and the mean squared error. This pre-order relation, defined between eigenvalues of frame operators, has proved useful in explaining the structure of minimizers of convex potentials (see [16]). Sub-majorization has also been useful in obtaining the structure of optimal vector configurations as well (see [19,21]). In turn, sub-majorization relations imply a family of tracial inequalities in terms of convex functions, that contain the frame potential and mean squared errors. We point out that these tracial inequalities have interest in their own right and collectively characterize sub-majorization.

Download English Version:

https://daneshyari.com/en/article/4599264

Download Persian Version:

https://daneshyari.com/article/4599264

<u>Daneshyari.com</u>