
A multi-channel architecture for IPv6-enabled wireless sensor and
actuator networks featuring PnP support

Paulo A. Neves a,b, Joel J.P.C. Rodrigues a,�, Min Chen c, Athanasios V. Vasilakos d

a Instituto de Telecomunicac- ~oes, University of Beira Interior, Portugal
b Polytechnic Institute of Castelo Branco, Castelo Branco, Portugal
c Seoul National University, Seoul, Korea
d National Technical University of Athens (NTUA), Greece

a r t i c l e i n f o

Article history:

Received 7 July 2010

Received in revised form

26 December 2010

Accepted 30 March 2011
Available online 10 May 2011

Keywords:

Wireless sensor and actuator networks

Data gathering on WSANs

IPv6

6LoWPAN

Plug-and-Play

ContikiOS

a b s t r a c t

Wireless sensor and actuator networks provide a distributed system composed of wirelessly connected

smart sensor and actuator nodes, suitable for cost-efficient control applications. An important research

challenge is deployment, where features like node auto-configuration, unattended operation, and

Internet connectivity are becoming mandatory. Moreover, on off-the-shelf solutions the user typically

must be network technology-savvy to take advantage of sensing and actuation services. This paper

presents a novel multi-channel architecture for sensor data gathering and actuation, featuring Plug-

and-Play like functionality for node attachment and operation, IPv6 at the node level, and dedicated

communication semantic protocols—the ZenSens system architecture. The architecture features the

sensor/actuator nodes, a personal computer application (SenseLab), a mobile application (SenseLab

mobile), and World Wide Web access (WebSensor), presenting the user with a complete sensing and

actuation solution. As a result the user can operate the network without technological background, and

near-zero configuration. All developed software and firmware are presented, and validated through a

series of experiments on real hardware, namely using a test-bed with TelosB motes running ContikiOS.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Wireless sensor and actuator networks (WSANs) present a
distributed environment of wirelessly connected nodes that can
present sensing and/or actuator control capabilities, thus making
them suitable for cost-efficient deployments (Xia et al., 2007).
Research community has centered much of its efforts on wireless
sensor networks (WSNs) (Baronti et al., 2007), leaving WSANs as a
relatively new area of research. Typically WSNs are considered for
many control applications at the sensing level, leaving the control
and actuation planes for other systems to perform.

A WSAN is also composed of small smart nodes that commu-
nicate wirelessly with processing core and memory, a battery, one
or more base stations (sinks), and sensor nodes. However, WSANs
introduce actuator nodes, small smart nodes similar to sensor
nodes, but with actuation capabilities. This small difference
brings a new plethora of applications and challenges. Small smart
nodes can have sensors, actuators, both or none. Sensors capture

information, actuators make decisions and take actions based on
the input from sensors, and sinks monitor overall network,
communicating with both sensor and actuator node types to
reach network’s goals (Rezgui and Eltoweissy, 2007).

A WSAN can also benefit from Internet connectivity, exposing
its sensing services and actuation information worldwide. Two
main approaches can be considered when Internet connectivity is
mandatory, namely proxy-based and node stack-based (Rodrigues
and Neves, 2010). WSN/WSAN with Internet connectivity makes
ubiquitous computing realistic (Stankovic, 2008), turning sensor
and actuator networks into ubiquitous networks. The node stack-
based approach has been gaining popularity (Hui and Culler,
2008; Yang et al., 2008; Silva et al., 2008; Han and Ma, 2007),
namely with support from two of the major operating systems for
embedded objects—TinyOS (Levis et al., 2004) and ContikiOS
(Dunkels et al., 2004).

This paper proposes a system architecture for WSANs, called
ZenSens, with user-centric perspective, namely featuring different
software access channels, and zero-user configuration. As a result
the user can operate and take advantage of the network’s services
without technological background. The architecture supports
Plug-and-Play (PnP) from the ground up, where nodes present
themselves to the sink, with automatic network attachment, in
a hassle-free and transparent way. With the ZenSens system a

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jnca

Journal of Network and Computer Applications

1084-8045/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jnca.2011.03.033

� Corresponding author at: Instituto de Telecomunicac- ~oes, University of Beira

Interior, 6201-001 Covilh~a, Portugal.

E-mail addresses: pneves@co.it.pt (P.A. Neves), joeljr@ieee.org

(J.J.P.C. Rodrigues), minchen@ieee.org (M. Chen), vasilako@ath.forthnet.gr

(A.V. Vasilakos).

Journal of Network and Computer Applications 37 (2014) 12–24

www.elsevier.com/locate/jnca
dx.doi.org/10.1016/j.jnca.2011.03.033
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2011.03.033&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2011.03.033&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2011.03.033&domain=pdf
mailto:pneves@co.it.pt
mailto:joeljr@ieee.org
mailto:joeljr@ieee.org
mailto:minchen@ieee.org
mailto:vasilako@ath.forthnet.gr
mailto:vasilako@ath.forthnet.gr
dx.doi.org/10.1016/j.jnca.2011.03.033


user can deploy and automatically monitor a WSAN through
different channels, putting the user in control without digging
into WSAN technology, mobile or personal computer technolo-
gies. ZenSens enables the user to focus on the physical system to
be controlled, obtaining results in an effective way.

PnP in WSNs/WSANs (Sung et al., 2009) is a fundamental
aspect of network operation, enabling automatic configuration of
nodes, abstraction from the attachment process, while contribut-
ing for dynamic topology designs. Another added benefit is also
the capacity to integrate new hardware platforms without system
changes or existing node reprogramming.

The software layers have knowledge of network condition and
assets through a USB-connected sink that manages and coordi-
nates connected remote nodes. For user access, the system
presents a multi-channel approach: computer-based (SenseLab),
mobile-based (SenseLab mobile), and Internet-browser based
(WebSensor). The personal computer application is also in charge
of distributing information obtained from the WSAN to the other
two channels through XML files. The mobile application brings
portability and convenience to the solution, while World Wide
Web access takes the system into a global scale.

The WSAN level is based and demonstrated on a test-bed using
TelosB motes (Polastre et al., 2005), running the Contiki operating
system. All motes are IPv6-enabled through uIPv6 (Durvy et al.,
2008), using the current implementation of 6LoWPAN available
on Contiki (sicslowpan). This ‘‘future-proof’’ approach enables
seamless Internet connectivity of network nodes.

The remainder of the paper is organized as follows. Section 2
presents some background and related work, while Section 3
elaborates on the ZenSens system architecture. Section 4 presents
USB and UDP communication, node’s firmware, and PnP support,
while Sections 5 and 6 detail SenseLab and SenseLab mobile
applications. Section 7 presents WebSensor web solution, while
Section 8 elaborates on system tests and validation. Finally,
Section 9 presents the conclusions and planned future work.

2. Background and related work

This section elaborates on the system’s technological base—

IPv6, 6LoWPAN, and ContikiOS—and presents motivation for this
work. IPv6 brings several benefits to embedded smart objects that
require seamless Internet connectivity (Silva et al., 2008).

The 6LoWPAN specification enables the transmission of IPv6
packets over standard IEEE 802.15.4 networks with support for
header compression (Montenegro et al., 2007). This specification
defines frame format for transmission of IPv6 packets, establish-
ment of local-link addresses, and stateless auto-configuration.
IEEE 802.15.4 defines physical and link-layer communication for
small embedded devices, suitable for WSN/WSAN. Moreover,
since IEEE 802.15.4 is present in the majority of sensor hardware
(motes), the application of 6LoWPAN is almost mandatory for
IPv6 node stack approaches. Furthermore, a very recent book
presents 6LoWPAN and its benefits in several application scenar-
ios, helping the adoption of IPv6-enabled sensor networks (Shelby
and Bormann, 2009). Another work presents a study on perfor-
mance of 6LoWPAN implementation over TinyOS, with TelosB
and MICAz motes, using ICMP payloads (Cody-Kenny et al., 2009).

Contiki is an operating system for embedded smart objects,
realizing the vision of ‘‘The Internet of Things’’, by enabling IP
communication on very constrained smart sensor node. It uses
ANSI C, as opposed to TinyOS nesC, and it is currently adopted by
many research teams worldwide. Among the assets of Contiki, it
is the uIPv6 communication stack that enables IPv6 communica-
tion for smart embedded devices, with MAC and link-layer

agnostic features. Namely, uIPv6 stack can potentially run over
IEEE 802.15.4, Ethernet, and IEEE 802.11.

Contiki supports an event-driven model with a form of multi-
processing designated as protothreads. Protothreads present a
multiprocessing-like environment, but with a shared stack sys-
tem, thus resulting in a memory-efficient alternative to threads.
However, since all protothreads share the same stack, care must
be taken with internal variables. Two types of events can be
used—system and in-program defined. Event timers are also avail-
able, enabling support for periodic events. Protothread processing
may be event-driven, thus turning it into an event handler.

The choice of ContikiOS over TinyOS was based in several
parameters. ContikiOS presents almost no learning curve for C
programmers, when compared to TinyOS, which uses nesC as the
development language. When considering IPv6 implementation,
ContikiOS is pioneer, offering a set of tools and the uIPv6 stack.
Third TelosB, the current test-bed hardware platform, is very well
supported in Contiki. Features like the availability of documenta-
tion, a pre-configured virtual machine and open source code are
common with TinyOS, although we found the virtual machine in
ContikiOS, instant-Contiki over Ubuntu, to be more adequate than
TinyOS over XUbuntos. Although ContikiOS documentation is far
from perfect, the discussion lists are simply phenomenal with real
help from the code contributors, including ContikiOS’ creator.

Authors believe IPv6 paves the way for the Future Internet, by
enabling not only hosts, but also small smart devices to be part of
Internet, realizing the ‘‘Internet of Things’’ vision. In this regard
6LoWPAN efforts may accelerate the adoption of IP-enabled WSN
designs and deployments. IP-enabled WSN research has been
focused on simulation-based approaches, use of test-beds for
performance assessment, some real deployments, and commercial
solutions. However, application layer, namely user interaction,
has been overlooked. To the best of the author’s knowledge, no
other solution presents multi-channel visualization tools, PnP-like
operation, and support for IPv6-enabled WSANs.

Developing over real sensor devices can be difficult and
tedious (Ramanathan et al., 2005; Köpke et al., 2008), since unlike
personal computer programming, programs must be sent to the
target hardware, which is a time consuming ‘‘non-productive’’
task. This time consuming process may lead to simulation-based
approaches, thus shortening the development cycle. On ContikiOS
two tools that can be used for simulating node behavior, namely
COOJA (Österlind et al., 2006) and MSPsim (Eriksson et al., 2009,
2007). The latter one can be used for stand-alone debugging on
MSP430 processor-based boards such as TelosB, while COOJA can
simulate complete networks. Nevertheless, real hardware deploy-
ments always provide a deeper insight, enabling test-bed envir-
onments, clearly presenting a better match to real scenario
conditions.

The current approach is a step-up on previous work on WSNs
(Neves et al., 2010a,b), taking the architecture and assets further
to actuator networks. The system is based on a WSN, and as a
result does not feature actuator assets. Also the UDP communica-
tion inside the network was fully revised on this new version,
separating node attachment from the data gathering process. The
inclusion of actuators also implied changes on the node’s firm-
ware, SenseLab, and WebSense, with the introduction of new
features.

The current work is evaluated and demonstrated through the
implementation on real devices (motes, computers, and mobile
devices), debugging and throughout testing, with development
assist from simulation software at early stages. Our motivation is
based on bringing WSN/WSANs into mainstream use, namely
finding ‘‘killer applications’’ for a technology that is still used on
very specific applications, with Internet connectivity to achieve
the vision of ‘‘Internet of Things’’. Applications stem from smart

P.A. Neves et al. / Journal of Network and Computer Applications 37 (2014) 12–24 13



Download English Version:

https://daneshyari.com/en/article/459927

Download Persian Version:

https://daneshyari.com/article/459927

Daneshyari.com

https://daneshyari.com/en/article/459927
https://daneshyari.com/article/459927
https://daneshyari.com

