Jordan derivations of prime rings with characteristic two

Tsiu-Kwen Lee *, Jheng-Huei Lin
Department of Mathematics, National Taiwan University, Taipei 106, Taiwan

A R T I C L E I N F O

Article history:

Received 16 July 2014
Accepted 14 August 2014
Available online 28 August 2014
Submitted by M. Bresar

MSC:

16N60
16W10
16W25

Keywords:
Prime ring
(Jordan) derivation
Elementary operator

Abstract

Let R be a prime ring with center $Z(R)$ and with extended centroid C. We give a complete characterization of Jordan derivations of R when char $R=2$ and $\operatorname{dim}_{C} R C=4$: An additive map $\delta: R \rightarrow R C$ is a Jordan derivation if and only if there exist a derivation $d: R \rightarrow R C$ and an additive map $\mu: R \rightarrow C$ such that $\delta=d+\mu$ and $\mu\left(x^{2}\right)=0$ for all $x \in R$. As consequences, it is proved among other things: Any $Z(R)$-linear Jordan derivation of R is a derivation if $\operatorname{dim}_{C} R C<\infty$. Moreover, if C is either a finite field or an algebraically closed field, where char $C=2$ and $n \geq 2$, then every Jordan derivation of $\mathrm{M}_{n}(C)$ is a derivation.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Throughout the paper, R always denotes a prime ring; that is, for $a, b \in R$, if $a R b=0$ then either $a=0$ or $b=0$. A map $d: R \rightarrow R$ is called a derivation if $d(x+y)=d(x)+d(y)$ and $d(x y)=d(x) y+x d(y)$ for all $x, y \in R$. Clearly, given $b \in R$, the map $x \mapsto[b, x]$ for $x \in R$ is a derivation, where $[b, x]:=b x-x b$. It is called the inner derivation of R defined by the element b. By a Jordan derivation we mean an additive map $\delta: R \rightarrow R$

[^0]satisfying $\delta\left(x^{2}\right)=\delta(x) x+x \delta(x)$ for all $x \in R$. Every derivation is a Jordan derivation. However, a Jordan derivation is not in general a derivation. In 1957 Herstein proved that if char $R \neq 2$, then any Jordan derivation of R is a derivation (see [10, Theorem 3.1]). We refer the reader to [9] and [3] for the 2-torsion free semiprime case. For the case char $R=2$, Herstein proved that if R is not a commutative integral domain, then a Jordan derivation δ of R satisfying
$$
\delta(x y x)=\delta(x) y x+x \delta(y) x+x y \delta(x) \quad \text { for all } x, y \in R
$$
is a derivation (see [10, Theorem 4.1]). See also [4] for further results concerning Jordan derivations satisfying (\dagger). For our purpose, we give a slight generalization concerning (Jordan) derivations. Let $R \subseteq S$ be rings. An additive map $\delta: R \rightarrow S$ is called a derivation (resp. Jordan derivation) if $\delta(x y)=\delta(x) y+x \delta(y)$ (resp. $\delta\left(x^{2}\right)=\delta(x) x+x \delta(x)$) for all $x, y \in R$. Let $Q_{m l}(R)$ denote the maximal left ring of quotients of R and let C denote the center of $Q_{m l}(R)$. It is known that $Q_{m l}(R)$ is also a prime ring and C is a field, which is called the extended centroid of R. We refer the reader to the book [2] for details. For our purpose, we restate Herstein's theorem [10, Theorem 3.1] as follows (it is still true with the same proof):

Theorem 1.1 (Herstein). Let R be a prime ring of characteristic different from 2. Then every Jordan derivation $\delta: R \rightarrow Q_{m l}(R)$ is a derivation.

By [5, Corollary 6.9], we have the following.
Theorem 1.2. Let R be a prime ring. Suppose that $\delta: R \rightarrow Q_{m l}(R)$ is a Jordan derivation. Then there exist a derivation $d: R \rightarrow Q_{m l}(R)$ and an additive map $\mu: R \rightarrow C$ such that $\delta=d+\mu$ and $\mu\left(x^{2}\right)=0$ for all $x \in R$ except when $\operatorname{dim}_{C} R C=4$ and char $R=2$.

Proof. By Theorem 1.1, we may assume that char $R=2$. Suppose that R is commutative. Then $\delta\left(x^{2}\right)=x \delta(x)+\delta(x) x=2 x \delta(x)=0$ for $x \in R$. Set $d:=0$ and $\mu:=\delta$, as asserted. Hence, we may assume that char $R=2$ and $\operatorname{dim}_{C} R C>4$. Linearizing $\delta\left(x^{2}\right)=$ $x \delta(x)+\delta(x) x$ and using the fact that char $R=2$, we see that δ is a Lie derivation. That is,

$$
\delta([x, y])=[\delta(x), y]+[x, \delta(y)]
$$

for all $x, y \in R$. Note that [5, Corollary 6.9] keeps true when " $\delta: R \rightarrow R$ " is replaced by " $\delta: R \rightarrow Q_{m l}(R)$ ". Thus, there exist a derivation $d: R \rightarrow Q_{m l}(R)$ and an additive map $\mu: R \rightarrow C$ such that $\delta=d+\mu$ and $\mu([x, y])=0$ for all $x, y \in R$. Let $x \in R$. Then

$$
\delta\left(x^{2}\right)=[\delta(x), x]=[d(x)+\mu(x), x]=[d(x), x]=d\left(x^{2}\right) .
$$

On the other hand, $\delta\left(x^{2}\right)=d\left(x^{2}\right)+\mu\left(x^{2}\right)$. Thus, $\mu\left(x^{2}\right)=0$ for all $x \in R$.

https://daneshyari.com/en/article/4599303

Download Persian Version:

https://daneshyari.com/article/4599303

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: tklee@math.ntu.edu.tw (T.-K. Lee), r01221012@ntu.edu.tw (J.-H. Lin).

