



## Jordan derivations of prime rings with characteristic two



Tsiu-Kwen Lee\*, Jheng-Huei Lin

Department of Mathematics, National Taiwan University, Taipei 106, Taiwan

#### ARTICLE INFO

Article history: Received 16 July 2014 Accepted 14 August 2014 Available online 28 August 2014 Submitted by M. Bresar

MSC: 16N60 16W10 16W25

Keywords: Prime ring (Jordan) derivation Elementary operator

#### ABSTRACT

Let R be a prime ring with center Z(R) and with extended centroid C. We give a complete characterization of Jordan derivations of R when char R = 2 and dim<sub>C</sub> RC = 4: An additive map  $\delta: R \to RC$  is a Jordan derivation if and only if there exist a derivation  $d: R \to RC$  and an additive map  $\mu: R \to C$  such that  $\delta = d + \mu$  and  $\mu(x^2) = 0$  for all  $x \in R$ . As consequences, it is proved among other things: Any Z(R)-linear Jordan derivation of R is a derivation if dim<sub>C</sub>  $RC < \infty$ . Moreover, if C is either a finite field or an algebraically closed field, where char C = 2 and  $n \ge 2$ , then every Jordan derivation of  $M_n(C)$  is a derivation.

© 2014 Elsevier Inc. All rights reserved.

### 1. Introduction

Throughout the paper, R always denotes a prime ring; that is, for  $a, b \in R$ , if aRb = 0then either a = 0 or b = 0. A map  $d: R \to R$  is called a derivation if d(x+y) = d(x)+d(y)and d(xy) = d(x)y + xd(y) for all  $x, y \in R$ . Clearly, given  $b \in R$ , the map  $x \mapsto [b, x]$ for  $x \in R$  is a derivation, where [b, x] := bx - xb. It is called the inner derivation of Rdefined by the element b. By a Jordan derivation we mean an additive map  $\delta: R \to R$ 

\* Corresponding author.

 $\label{eq:http://dx.doi.org/10.1016/j.laa.2014.08.006} 0024-3795/©$  2014 Elsevier Inc. All rights reserved.

E-mail addresses: tklee@math.ntu.edu.tw (T.-K. Lee), r01221012@ntu.edu.tw (J.-H. Lin).

satisfying  $\delta(x^2) = \delta(x)x + x\delta(x)$  for all  $x \in R$ . Every derivation is a Jordan derivation. However, a Jordan derivation is not in general a derivation. In 1957 Herstein proved that if char  $R \neq 2$ , then any Jordan derivation of R is a derivation (see [10, Theorem 3.1]). We refer the reader to [9] and [3] for the 2-torsion free semiprime case. For the case char R = 2, Herstein proved that if R is not a commutative integral domain, then a Jordan derivation  $\delta$  of R satisfying

$$\delta(xyx) = \delta(x)yx + x\delta(y)x + xy\delta(x) \quad \text{for all } x, y \in R \tag{\dagger}$$

is a derivation (see [10, Theorem 4.1]). See also [4] for further results concerning Jordan derivations satisfying (†). For our purpose, we give a slight generalization concerning (Jordan) derivations. Let  $R \subseteq S$  be rings. An additive map  $\delta: R \to S$  is called a derivation (resp. Jordan derivation) if  $\delta(xy) = \delta(x)y + x\delta(y)$  (resp.  $\delta(x^2) = \delta(x)x + x\delta(x)$ ) for all  $x, y \in R$ . Let  $Q_{ml}(R)$  denote the maximal left ring of quotients of R and let C denote the center of  $Q_{ml}(R)$ . It is known that  $Q_{ml}(R)$  is also a prime ring and C is a field, which is called the extended centroid of R. We refer the reader to the book [2] for details. For our purpose, we restate Herstein's theorem [10, Theorem 3.1] as follows (it is still true with the same proof):

**Theorem 1.1** (Herstein). Let R be a prime ring of characteristic different from 2. Then every Jordan derivation  $\delta: R \to Q_{ml}(R)$  is a derivation.

By [5, Corollary 6.9], we have the following.

**Theorem 1.2.** Let R be a prime ring. Suppose that  $\delta: R \to Q_{ml}(R)$  is a Jordan derivation. Then there exist a derivation  $d: R \to Q_{ml}(R)$  and an additive map  $\mu: R \to C$  such that  $\delta = d + \mu$  and  $\mu(x^2) = 0$  for all  $x \in R$  except when  $\dim_C RC = 4$  and  $\operatorname{char} R = 2$ .

**Proof.** By Theorem 1.1, we may assume that char R = 2. Suppose that R is commutative. Then  $\delta(x^2) = x\delta(x) + \delta(x)x = 2x\delta(x) = 0$  for  $x \in R$ . Set d := 0 and  $\mu := \delta$ , as asserted. Hence, we may assume that char R = 2 and dim<sub>C</sub> RC > 4. Linearizing  $\delta(x^2) = x\delta(x) + \delta(x)x$  and using the fact that char R = 2, we see that  $\delta$  is a Lie derivation. That is,

$$\delta([x,y]) = \left[\delta(x), y\right] + \left[x, \delta(y)\right]$$

for all  $x, y \in R$ . Note that [5, Corollary 6.9] keeps true when " $\delta: R \to R$ " is replaced by " $\delta: R \to Q_{ml}(R)$ ". Thus, there exist a derivation  $d: R \to Q_{ml}(R)$  and an additive map  $\mu: R \to C$  such that  $\delta = d + \mu$  and  $\mu([x, y]) = 0$  for all  $x, y \in R$ . Let  $x \in R$ . Then

$$\delta(x^2) = [\delta(x), x] = [d(x) + \mu(x), x] = [d(x), x] = d(x^2).$$

On the other hand,  $\delta(x^2) = d(x^2) + \mu(x^2)$ . Thus,  $\mu(x^2) = 0$  for all  $x \in R$ .  $\Box$ 

Download English Version:

# https://daneshyari.com/en/article/4599303

Download Persian Version:

https://daneshyari.com/article/4599303

Daneshyari.com