

Contents lists available at ScienceDirect Linear Algebra and its Applications

www.elsevier.com/locate/laa

The end-parameters of a Leonard pair

Kazumasa Nomura

Tokyo Medical and Dental University, Kohnodai, Ichikawa, 272-0827 Japan

A R T I C L E I N F O

Article history: Received 21 July 2014 Accepted 10 August 2014 Available online 30 August 2014 Submitted by R. Brualdi

MSC: 05E35 05E30 33C45 33D45

Keywords: Leonard pair Tridiagonal pair Tridiagonal matrix

ABSTRACT

Fix an algebraically closed field \mathbb{F} and an integer $d \geq 3$. Let V be a vector space over \mathbb{F} with dimension d + 1. A Leonard pair on V is a pair of diagonalizable linear transformations $A: V \to V$ and $A^*: V \to V$, each acting in an irreducible tridiagonal fashion on an eigenbasis for the other one. There is an object related to a Leonard pair called a Leonard system. It is known that a Leonard system is determined up to isomorphism by a sequence of scalars $(\{\theta_i\}_{i=0}^d, \{\theta_i^*\}_{i=0}^d, \{\varphi_i\}_{i=1}^d, \{\phi_i\}_{i=1}^d)$, called its parameter array. The scalars $\{\theta_i\}_{i=0}^d$ (resp. $\{\theta_i^*\}_{i=0}^d$) are mutually distinct, and the expressions $(\theta_{i-2} - \theta_{i+1})/(\theta_{i-1} - \theta_i)$, $(\theta_{i-2}^* - \theta_{i+1})/(\theta_{i-1} - \theta_i)$ $\theta_{i+1}^*)/(\theta_{i-1}^* - \theta_i^*)$ are equal and independent of i for $2 \leq i \leq i$ d-1. Write this common value as $\beta+1$. In the present paper, we consider the "end-parameters" $\theta_0, \theta_d, \theta_0^*, \theta_d^*, \varphi_1, \varphi_d, \phi_1, \phi_d$ of the parameter array. We show that a Leonard system is determined up to isomorphism by the end-parameters and β . We display a relation between the end-parameters and β . Using this relation, we show that there are up to isomorphism at most |(d-1)/2| Leonard systems that have specified endparameters. The upper bound $\lfloor (d-1)/2 \rfloor$ is best possible. © 2014 Elsevier Inc. All rights reserved.

LINEAR

pplications

CrossMark

1. Introduction

Throughout the paper \mathbb{F} denotes an algebraically closed field.

 $\label{eq:http://dx.doi.org/10.1016/j.laa.2014.08.004 \\ 0024-3795/© 2014 Elsevier Inc. All rights reserved.$

E-mail address: knomura@pop11.odn.ne.jp.

We begin by recalling the notion of a Leonard pair. We use the following terms. A square matrix is said to be *tridiagonal* whenever each nonzero entry lies on either the diagonal, the subdiagonal, or the superdiagonal. A tridiagonal matrix is said to be *irreducible* whenever each entry on the subdiagonal is nonzero and each entry on the superdiagonal is nonzero.

Definition 1.1. (See [5, Definition 1.1].) Let V be a vector space over \mathbb{F} with finite positive dimension. By a *Leonard pair on* V we mean an ordered pair of linear transformations $A: V \to V$ and $A^*: V \to V$ that satisfy (i) and (ii) below:

- (i) There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A^* is diagonal.
- (ii) There exists a basis for V with respect to which the matrix representing A^* is irreducible tridiagonal and the matrix representing A is diagonal.

Note 1.2. According to a common notational convention, A^* denotes the conjugate transpose of A. We are not using this convention. In a Leonard pair A, A^* the matrices A and A^* are arbitrary subject to the conditions (i) and (ii) above.

We refer the reader to [3,5-8] for background on Leonard pairs.

For the rest of this section, fix an integer $d \ge 0$ and a vector space V over \mathbb{F} with dimension d + 1. Consider a Leonard pair A, A^* on V. By [5, Lemma 1.3] each of A, A^* has mutually distinct d+1 eigenvalues. Let $\{\theta_i\}_{i=0}^d$ be an ordering of the eigenvalues of A, and let $\{V_i\}_{i=0}^d$ be the corresponding eigenspaces. For $0 \le i \le d$ define $E_i : V \to V$ such that $(E_i - I)V_i = 0$ and $E_iV_j = 0$ for $j \ne i$ $(0 \le j \le d)$. Here I denotes the identity. We call E_i the primitive idempotent of A associated with θ_i . The primitive idempotent E_i^* of A^* associated with θ_i^* is similarly defined. For $0 \le i \le d$ pick a nonzero $v_i \in V_i$. Note that $\{v_i\}_{i=0}^d$ is a basis for V. We say the ordering $\{E_i\}_{i=0}^d$ is standard whenever the basis $\{v_i\}_{i=0}^d$ satisfies Definition 1.1(ii). A standard ordering of the primitive idempotents of A^* is similarly defined. For a standard ordering $\{E_i\}_{i=0}^d$, the ordering $\{E_{d-i}\}_{i=0}^d$ is also standard and no further ordering is standard. A similar result applies to a standard ordering of the primitive idempotents of A^* .

Definition 1.3. (See [5, Definition 1.4].) By a *Leonard system* on V we mean a sequence

$$\Phi = \left(A, \{E_i\}_{i=0}^d, A^*, \{E_i^*\}_{i=0}^d\right),\tag{1}$$

where A, A^* is a Leonard pair on V, and $\{E_i\}_{i=0}^d$ (resp. $\{E_i^*\}_{i=0}^d$) is a standard ordering of the primitive idempotents of A (resp. A^*). We say Φ is over \mathbb{F} . We call d the diameter of Φ .

We recall the notion of an isomorphism of Leonard systems. Consider a Leonard system (1) on V and a Leonard system $\Phi' = (A', \{E'_i\}_{i=0}^d, A^{*'}, \{E^{*'}_i\}_{i=0}^d)$ on a vector space V' with dimension d + 1. By an isomorphism of Leonard systems from Φ to Φ' we

Download English Version:

https://daneshyari.com/en/article/4599307

Download Persian Version:

https://daneshyari.com/article/4599307

Daneshyari.com