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A vector space S of linear operators between finite-dimension-
al vector spaces U and V is called locally linearly dependent 
(in abbreviated form: LLD) when every vector x ∈ U is anni-
hilated by a non-zero operator in S. By a duality argument, 
one sees that studying LLD operator spaces amounts to study-
ing vector spaces of matrices with rank less than the number 
of columns, or, alternatively, vector spaces of non-injective 
operators.
In this article, this insight is used to obtain classification re-
sults for LLD spaces of small dimension or large essential 
range (the essential range being the sum of all the ranges of 
the operators in S). We show that such classification theorems 
can be obtained by translating into the context of LLD spaces 
Atkinson’s classification of primitive spaces of bounded rank 
matrices; we also obtain a new classification theorem for such 
spaces that covers a range of dimensions for the essential range 
that is roughly twice as large as that in Atkinson’s theorem. In 
particular, we obtain a classification of all 4-dimensional LLD 
operator spaces for fields with more than 3 elements (before-
hand, such a classification was known only for algebraically 
closed fields and in the context of primitive spaces of matrices 
of bounded rank).
These results are applied to obtain improved upper bounds 
for the maximal rank in a minimal LLD operator space.
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1. Introduction

Throughout the paper, all the vector spaces are assumed to be finite-dimensional.

1.1. Local linear dependence

Let U and V be finite-dimensional vector spaces over a field K whose cardinality is 
denoted by #K, and S be a linear subspace of the space L(U, V ) of all linear maps from U

to V . We say that S is locally linearly dependent (LLD) when every vector x ∈ U is 
annihilated by some non-zero operator f ∈ S. Given a positive integer c, we say that S
is c-locally linearly dependent (c-LLD) when, for every vector x ∈ U , the linear subspace 
{f ∈ S: f(x) = 0} has dimension at least c.

Alternatively, a family (f1, . . . , fn) is called LLD when, for every x ∈ U , the family 
(f1(x), . . . , fn(x)) is linearly dependent in V . Obviously, this property is satisfied if and 
only if either f1, . . . , fn are linearly dependent in L(U, V ) or span(f1, . . . , fn) is an LLD 
operator space. Moreover, if some linear subspace W of V contains the image of each fi
and dimW < n, then f1, . . . , fn are obviously LLD.

The following example plays a central part in this article: let ϕ : U × U → V be an 
alternating bilinear map (with U non-zero), and assume that ϕ is fully-regular, that is 
V = span{ϕ(x, y) | (x, y) ∈ U2} and ϕ(x, −) �= 0 for all non-zero vectors x ∈ U . Then, 
the linear subspace Sϕ := {ϕ(x, −) | x ∈ U} of L(U, V ) is LLD as, for every non-zero 
vector x ∈ U , one has ϕ(x, x) = 0 with ϕ(x, −) �= 0. We shall say that Sϕ is an operator 
space of the alternating kind. An obvious example is the one of the standard pairing 
ϕ : U × U → U ∧ U .

Two operator spaces S ⊂ L(U, V ) and S ′ ⊂ L(U ′, V ′) are called equivalent, and we 
write S ∼ S ′, when there are two isomorphisms F : U �−−→ U ′ and G : V ′ �−−→ V such 
that S = {G ◦ g ◦ F | g ∈ S ′}, in which case we have a uniquely defined isomorphism 
H : S �−−→ S ′ such that

∀f ∈ S, f = G ◦H(f) ◦ F.

The corresponding notion for spaces of rectangular matrices is the standard equivalence 
relation, where two matrix subspaces M ⊂ Mm,n(K) and M′ ⊂ Mp,q(K) are equivalent 
if and only if m = p, n = q and there are non-singular matrices P ∈ GLm(K) and 
Q ∈ GLn(K) such that M = PM′Q. Obviously, the operator spaces S and S ′ are 
equivalent if and only if they are represented (in arbitrary bases of U , V , U ′ and V ′) by 
equivalent matrix spaces, or, alternatively, if and only if there are choices of bases of U , 
V , U ′ and V ′ for which the same space of matrices represents both S and S ′.

Note that if S ∼ S ′ and S is c-LLD, then S ′ is also c-LLD. Moreover, if S is minimal 
among the c-LLD subspaces of L(U, V ) and S ∼ S ′, then S ′ is minimal among the c-LLD 
subspaces of L(U ′, V ′). By the classification of minimal c-LLD operator spaces, we mean 
their determination up to equivalence.
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