Polynomial numerical hulls of the direct sum of a normal matrix and a Jordan block

Saeed Karami, Abbas Salemi *
Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran

A R T I C L E I N F O

Article history:

Received 9 April 2014
Accepted 6 September 2014
Available online 30 September 2014
Submitted by C.-K. Li

MSC:

15A60
65F10

Keywords:

Polynomial numerical hull
Jordan block
Normal matrices

Abstract

Let $J_{k}(\lambda)$ be the $k \times k$ Jordan block with eigenvalue λ and let N be an $m \times m$ normal matrix. In this paper we study the polynomial numerical hulls of order 2 and $n-1$ for $A=J_{k}(\lambda) \oplus N$, where $n=m+k$. We obtain a necessary and sufficient condition such that $V^{2}(A)$ has an interior point. Also, we analytically characterize $V^{2}\left(J_{2}(\lambda) \oplus N\right)$ and we show that if $\sigma(N) \cup\{\lambda\}$ is co-linear, then $V^{2}\left(J_{2}(\lambda) \oplus N\right)=$ $\bigcup_{a \in \sigma(N)} V^{2}\left(J_{2}(\lambda) \oplus[a]\right)$. Finally, we study $V^{n-1}(A)$ and we show that if $\sigma(N)$ is neither co-linear nor co-circular, then $V^{n-1}(A)$ has at most one point more than $\sigma(A)$.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

Let M_{n} be the set of all $n \times n$ complex matrices. Motivated by the study of convergence of projection methods in solving linear systems such as GMRES (e.g., see [1,2]), researchers studied the polynomial numerical hulls of order k of a matrix $A \in M_{n}$, which is defined and denoted by

$$
\begin{equation*}
V^{k}(A)=\left\{\mu \in \mathbb{C}:|p(\mu)| \leq\|p(A)\|, \forall p \in \mathcal{P}_{k}\right\} \tag{1}
\end{equation*}
$$

[^0]where \mathcal{P}_{k} is the set of complex polynomials with degree at most k. The sets $V^{k}(A)$ are nonempty and compact and $V^{1}(A)$ is equal to the field of values of A [1]. An equivalent definition of polynomial numerical hull of order k based on joint numerical range (or k-dimensional generalized field of values) has been established in [2] (see also [3,4]):
\[

$$
\begin{equation*}
V^{k}(A)=\left\{\mu \in \mathbb{C}:\left(\mu, \mu^{2}, \ldots, \mu^{k}\right) \in \operatorname{Conv}\left(W\left(A, A^{2}, \ldots, A^{k}\right)\right)\right\} \tag{2}
\end{equation*}
$$

\]

where $\operatorname{Conv}(S)$ denotes the convex hull of the set $S \subseteq \mathbb{C}^{k}$ and the joint numerical range of the $n \times n$ matrices $A_{1}, A_{2}, \ldots, A_{k}$ is defined by

$$
W\left(A_{1}, A_{2}, \ldots, A_{k}\right)=\left\{\left(x^{*} A_{1} x, x^{*} A_{2} x, \ldots, x^{*} A_{k} x\right): x \in \mathbb{C}^{n}, x^{*} x=1\right\}
$$

Also another useful equivalent definition of polynomial numerical hulls of order k which studied in [5] and [6] is the following

$$
\begin{equation*}
V^{k}(A):=\left\{z \in \mathbb{C}: p(z) \in W(p(A)), \forall p \in \mathcal{P}_{k}\right\} \tag{3}
\end{equation*}
$$

Let $\operatorname{pco}_{k}(S)$ denote the polynomially convex hull of degree k for a compact set $S \subseteq \mathbb{C}$:

$$
\begin{equation*}
\operatorname{pco}_{k}(S):=\left\{z \in \mathbb{C}:|p(z)| \leq \max _{w \in S}|p(w)|, \forall p \in \mathcal{P}_{k}\right\} \tag{4}
\end{equation*}
$$

A set S is called polynomially convex of degree k if $\operatorname{pco}_{k}(S)=S$.
Lemma 1.1. (See [3, 7].) Let $A \in M_{n}$. Then the following properties hold for polynomial numerical hulls of order k :

1. $\sigma(A)=V^{n}(A) \subseteq V^{k+1}(A) \subseteq V^{k}(A) \subseteq V^{1}(A)=W(A)$ for all $k=2, \ldots, n-1$.
2. $V^{k}(A)$ is polynomially convex of degree k and $\operatorname{pco}_{k}\left(\partial V^{k}(A)\right)=V^{k}(A)$.
3. We have $V^{k}\left(U^{*} A U\right)=V^{k}(A)$ for any unitary matrix $U \in M_{n}$ and for all $k=$ $1, \ldots, n$.
4. $V^{k}(\alpha A+\beta I)=\alpha V^{k}(A)+\beta$ for all α and β in the complex plane \mathbb{C}.
5. Let A be a Hermitian matrix. Then $V^{2}(A)=\sigma(A)$.

In [8], it has been shown that the polynomial numerical hulls of order $k<n$ for a Jordan block $J_{n}(\lambda)$ is a disk about λ and the radius of the disk has been obtained when $k=n-1$. Also in [7] the polynomial numerical hulls of normal matrices has been studied, specially in [9] the polynomial numerical hull of order two for all normal matrices and matrices whose squares are Hermitian have been characterized.

While polynomial numerical hulls appear to be a valuable tool, their determination or computation represents a difficult open problem even for simple classes of nonnormal matrices [10]. In this paper, by using the results in [2,8] and [9], we study polynomial numerical hulls of particular nonnormal matrices. More precisely we study $V^{t}\left(J_{k}(\lambda) \oplus N\right)$

https://daneshyari.com/en/article/4599325

Download Persian Version:
https://daneshyari.com/article/4599325

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: salemi@uk.ac.ir (A. Salemi).

