Operator inequalities: From a general theorem to concrete inequalities

Mitsuru Uchiyama ${ }^{\text {a,b,*,1 }}$
${ }^{\text {a }}$ Department of Mathematics, Ritsumeikan University, Kusatsu City, Shiga, Japan
${ }^{\text {b }}$ Shimane University, Matsue City, Shimane, Japan

A R T I C L E I N F O

Article history:

Received 30 May 2014
Accepted 16 September 2014
Available online 1 October 2014
Submitted by R. Bhatia

MSC:

47A63
47A64
47A56
15B57

Keywords:
Operator inequality
Operator mean
Loewner's theorem
Hansen-Pedersen inequality
Furuta inequality
Majorization

Abstract

The aim of this paper is to give a method to extract concrete inequalities from a general theorem, which is established by making use of majorization relation between functions. By this method we can get a lot of inequalities; among others we extend Furuta inequality as follows: Let f_{i}, g_{j} be positive operator monotone functions on $[0, \infty)$ and put $k(t)=$ $t^{r_{0}} f_{1}(t)^{r_{1}} \cdots f_{m}(t)^{r_{m}}, \quad h(t)=t^{p_{0}} g_{1}(t)^{p_{1}} \cdots g_{n}(t)^{p_{n}}$, where $p_{0} \geq 1$ and $r_{i} \geq 0, p_{j} \geq 0$. Then $0 \leq A \leq C \leq B$ implies, for $0<\alpha \leq \frac{1+r_{0}}{p+r_{0}}$ with $p=p_{0}+\cdots+p_{n},\left(k(C)^{\frac{1}{2}} h(A) k(C)^{\frac{1}{2}}\right)^{\alpha} \leq$ $\left(k(C)^{\frac{1}{2}} h(C) k(C)^{\frac{1}{2}}\right)^{\alpha} \leq\left(k(C)^{\frac{1}{2}} h(B) k(C)^{\frac{1}{2}}\right)^{\alpha}$. Moreover, we show $\log C^{1 / 2} e^{A} C^{1 / 2} \leq \log C^{1 / 2} e^{C} C^{1 / 2} \leq \log C^{1 / 2} e^{B} C^{1 / 2}$, provided C is invertible. We also refer to operator geometric mean.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let $\mathbf{P}(I)$ denote the set of all operator monotone functions on an interval I. A constant function is here admitted to be an operator monotone function. We put $\mathbf{P}_{+}(I)=\{f \in$

[^0]$\mathbf{P}(I) \mid f(t) \geq 0$ for $t \in I, f \neq 0\}$. It is evident and fundamental that $-\frac{1}{t} \in \mathbf{P}(-\infty, 0) \cap$ $\mathbf{P}(0, \infty)$. If $f \in \mathbf{P}_{+}(a, b)$ and $-\infty<a$, then f has the natural extension to $[a, b)$, which belongs to $\mathbf{P}_{+}[a, b)$. We therefore identify $\mathbf{P}_{+}(a, b)$ with $\mathbf{P}_{+}[a, b)$. It is well-known that if $f(t) \in \mathbf{P}_{+}(0, \infty)$, then $\frac{t}{f(t)}$ and $f\left(t^{\alpha}\right)^{1 / \alpha}(0<\alpha<1)$ are both in $\mathbf{P}_{+}(0, \infty)$ and that if $f(t), \phi(t)$ and $\varphi(t)$ are all in $\mathbf{P}_{+}(0, \infty)$, then so are $f\left(t^{\alpha}\right) \phi\left(t^{1-\alpha}\right), f(t)^{\alpha} \phi(t)^{1-\alpha}$ for $0<\alpha<1$ and $\phi(f(t)) \varphi\left(\frac{t}{f(t)}\right)$. This result deeply depends on Loewner's theorem ([16], also see $[15,5,8,13,18,19])$.

By Krauss [14] and Bendat-Shermann [4], $g(t)$ defined on $[0, \infty)$ with $g(0)=0$ is operator convex if and only if $g(t)=t f(t)$ with $f(t) \in \mathbf{P}(0, \infty)$. It is also known that a function $f(t)$ defined on (a, ∞) is operator monotone if and only if $f(t)$ is operator concave and $f(\infty)>-\infty[26]$. See $[6,7,12,27,28]$ about recent study around this area.

Hansen [10] and Hansen-Pedersen [11] have shown that if $f(t) \in \mathbf{P}_{+}(0, \infty),\|X\| \leq 1$ and $A \geq 0$, then $X^{*} f(A) X \leq f\left(X^{*} A X\right)$.

From now on, we assume that a function is continuous and that 'increasing' means 'strictly increasing'. We also assume that $I=[a, b)$ or $I=(a, b)$ with $-\infty \leq a<b \leq \infty$ unless otherwise stated.

Definition 1.1. (See $[24,25]$.) Let $h(t)$ and $g(t)$ be functions defined on I, and suppose $g(t)$ is increasing. Then h is said to be majorized by g, in symbol $h \preceq g$ if the composite $h \circ g^{-1}$ is operator monotone on $g(I)$.

This definition is equivalent to

$$
\sigma(A), \sigma(B) \subset I, \quad g(A) \leq g(B) \quad \Longrightarrow \quad h(A) \leq h(B)
$$

In this case $h(t)$ is clearly non-decreasing. If we need to make clear the domain I, we write $h \preceq g(I)$ or $h \preceq g$ on I. $f(t) \preceq t$ on I means $f \in \mathbf{P}(I)$. The Loewner-Heinz inequality says $g(t)^{\alpha} \preceq g(t)^{\beta}$ if $0<\alpha<\beta$ and $g(t)>0$ is increasing. Let τ be an increasing function from an interval J to I. Then $h \circ \tau \preceq g \circ \tau$ on J if $h \preceq g$ on I. The following fact will be used later: Let $h(t) \geq 0$ be a non-decreasing function on $(0, \infty)$ and $g(t)$ an increasing function on $(0, \infty)$ with the range $(0, \infty)$. Then for $0<\alpha<1$

$$
h(t) \preceq g(t) \text { on }(0, \infty) \quad \Longrightarrow \quad h(t)^{1 / \alpha} \preceq g(t)^{1 / \alpha} \text { on }(0, \infty) .
$$

Indeed, the hypothesis implies $f(s):=h\left(g^{-1}(s)\right) \in \mathbf{P}_{+}(0, \infty)$. Since $\left(h\left(g^{-1}\left(s^{\alpha}\right)\right)\right)^{1 / \alpha}=$ $f\left(s^{\alpha}\right)^{1 / \alpha} \preceq s$ on $0<s<\infty$, by putting $s=g(t)^{1 / \alpha}$ we get $h(t)^{1 / \alpha} \preceq g(t)^{1 / \alpha}$ on $0<t<\infty$. The following set was introduced in [24,25]

$$
\begin{aligned}
\mathbf{L} \mathbf{P}_{+}(I) & :=\{h \mid h \text { is defined on } I, h(t)>0 \text { on }(a, b), \log h \in \mathbf{P}(a, b)\} . \\
\mathbf{P}_{+}^{-1}(I) & :=\left\{h \mid h \text { is increasing on } I, h((a, b))=(0, \infty), h^{-1} \in \mathbf{P}(h(I))\right\} .
\end{aligned}
$$

If $-\infty<a$, identifying h on (a, b) as its natural extension to $[a, b)$ gives $\mathbf{L} \mathbf{P}_{+}(a, b)=$ $\mathbf{L} \mathbf{P}_{+}[a, b), \mathbf{P}_{+}^{-1}(a, b)=\mathbf{P}_{+}^{-1}[a, b)$. Notice that $h \in \mathbf{P}_{+}^{-1}(a, b)$ if and only if $t \preceq h(t)$ on (a, b) and $h(a, b)=(0, \infty)$.

https://daneshyari.com/en/article/4599326

Download Persian Version:
https://daneshyari.com/article/4599326

Daneshyari.com

[^0]: * Corresponding author at: Shimane University, Matsue City, Shimane, Japan.

 E-mail addresses: uchiyama@fc.ritsumei.ac.jp, uchiyama@riko.shimane-u.ac.jp.
 ${ }^{1}$ The author was supported in part by (JSPS) KAKENHI 25400116.

