

Contents lists available at ScienceDirect

### Linear Algebra and its Applications

www.elsevier.com/locate/laa

# Operator inequalities: From a general theorem to concrete inequalities



LINEAR

plications

Mitsuru Uchiyama<sup>a,b,\*,1</sup>

<sup>a</sup> Department of Mathematics, Ritsumeikan University, Kusatsu City, Shiga, Japan
<sup>b</sup> Shimane University, Matsue City, Shimane, Japan

#### ARTICLE INFO

Article history: Received 30 May 2014 Accepted 16 September 2014 Available online 1 October 2014 Submitted by R. Bhatia

MSC: 47A63 47A64 47A56 15B57

Keywords: Operator inequality Operator mean Loewner's theorem Hansen–Pedersen inequality Furuta inequality Majorization

#### ABSTRACT

The aim of this paper is to give a method to extract concrete inequalities from a general theorem, which is established by making use of majorization relation between functions. By this method we can get a lot of inequalities; among others we extend Furuta inequality as follows: Let  $f_i$ ,  $g_j$  be positive operator monotone functions on  $[0, \infty)$  and put  $k(t) = t^{r_0}f_1(t)^{r_1}\cdots f_m(t)^{r_m}$ ,  $h(t) = t^{p_0}g_1(t)^{p_1}\cdots g_n(t)^{p_n}$ , where  $p_0 \geq 1$  and  $r_i \geq 0$ ,  $p_j \geq 0$ . Then  $0 \leq A \leq C \leq B$  implies, for  $0 < \alpha \leq \frac{1+r_0}{p+r_0}$  with  $p = p_0 + \cdots + p_n$ ,  $(k(C)^{\frac{1}{2}}h(A)k(C)^{\frac{1}{2}})^{\alpha} \leq (k(C)^{\frac{1}{2}}h(B)k(C)^{\frac{1}{2}})^{\alpha}$ . Moreover, we show  $\log C^{1/2}e^AC^{1/2} \leq \log C^{1/2}e^CC^{1/2} \leq \log C^{1/2}e^BC^{1/2}$ , provided C is invertible. We also refer to operator geometric mean.

© 2014 Elsevier Inc. All rights reserved.

#### 1. Introduction

Let  $\mathbf{P}(I)$  denote the set of all operator monotone functions on an interval I. A constant function is here admitted to be an operator monotone function. We put  $\mathbf{P}_+(I) = \{f \in$ 

 $\ast\,$  Corresponding author at: Shimane University, Matsue City, Shimane, Japan.

E-mail addresses: uchiyama@fc.ritsumei.ac.jp, uchiyama@riko.shimane-u.ac.jp.

<sup>1</sup> The author was supported in part by (JSPS) KAKENHI 25400116.

 $\label{eq:http://dx.doi.org/10.1016/j.laa.2014.09.021} 0024-3795 \ensuremath{\oslash}\ 0214 \ Elsevier \ Inc. \ All \ rights \ reserved.$ 

 $\mathbf{P}(I) \mid f(t) \geq 0$  for  $t \in I$ ,  $f \neq 0$ }. It is evident and fundamental that  $-\frac{1}{t} \in \mathbf{P}(-\infty, 0) \cap \mathbf{P}(0,\infty)$ . If  $f \in \mathbf{P}_+(a,b)$  and  $-\infty < a$ , then f has the natural extension to [a,b), which belongs to  $\mathbf{P}_+[a,b)$ . We therefore identify  $\mathbf{P}_+(a,b)$  with  $\mathbf{P}_+[a,b)$ . It is well-known that if  $f(t) \in \mathbf{P}_+(0,\infty)$ , then  $\frac{t}{f(t)}$  and  $f(t^{\alpha})^{1/\alpha}$  ( $0 < \alpha < 1$ ) are both in  $\mathbf{P}_+(0,\infty)$  and that if  $f(t), \phi(t)$  and  $\varphi(t)$  are all in  $\mathbf{P}_+(0,\infty)$ , then so are  $f(t^{\alpha})\phi(t^{1-\alpha})$ ,  $f(t)^{\alpha}\phi(t)^{1-\alpha}$  for  $0 < \alpha < 1$  and  $\phi(f(t))\varphi(\frac{t}{f(t)})$ . This result deeply depends on Loewner's theorem ([16], also see [15,5,8,13,18,19]).

By Krauss [14] and Bendat–Shermann [4], g(t) defined on  $[0, \infty)$  with g(0) = 0 is operator convex if and only if g(t) = tf(t) with  $f(t) \in \mathbf{P}(0, \infty)$ . It is also known that a function f(t) defined on  $(a, \infty)$  is operator monotone if and only if f(t) is operator concave and  $f(\infty) > -\infty$  [26]. See [6,7,12,27,28] about recent study around this area.

Hansen [10] and Hansen–Pedersen [11] have shown that if  $f(t) \in \mathbf{P}_+(0,\infty)$ ,  $||X|| \le 1$ and  $A \ge 0$ , then  $X^*f(A)X \le f(X^*AX)$ .

From now on, we assume that a function is continuous and that 'increasing' means 'strictly increasing'. We also assume that I = [a, b) or I = (a, b) with  $-\infty \le a < b \le \infty$  unless otherwise stated.

**Definition 1.1.** (See [24,25].) Let h(t) and g(t) be functions defined on I, and suppose g(t) is increasing. Then h is said to be *majorized* by g, in symbol  $h \leq g$  if the composite  $h \circ g^{-1}$  is operator monotone on g(I).

This definition is equivalent to

$$\sigma(A), \sigma(B) \subset I, \qquad g(A) \leq g(B) \implies h(A) \leq h(B).$$

In this case h(t) is clearly non-decreasing. If we need to make clear the domain I, we write  $h \leq g(I)$  or  $h \leq g$  on I.  $f(t) \leq t$  on I means  $f \in \mathbf{P}(I)$ . The Loewner-Heinz inequality says  $g(t)^{\alpha} \leq g(t)^{\beta}$  if  $0 < \alpha < \beta$  and g(t) > 0 is increasing. Let  $\tau$  be an increasing function from an interval J to I. Then  $h \circ \tau \leq g \circ \tau$  on J if  $h \leq g$  on I. The following fact will be used later: Let  $h(t) \geq 0$  be a non-decreasing function on  $(0, \infty)$  and g(t) an increasing function on  $(0, \infty)$  with the range  $(0, \infty)$ . Then for  $0 < \alpha < 1$ 

$$h(t) \preceq g(t) \text{ on } (0,\infty) \implies h(t)^{1/\alpha} \preceq g(t)^{1/\alpha} \text{ on } (0,\infty).$$

Indeed, the hypothesis implies  $f(s) := h(g^{-1}(s)) \in \mathbf{P}_+(0,\infty)$ . Since  $(h(g^{-1}(s^{\alpha})))^{1/\alpha} = f(s^{\alpha})^{1/\alpha} \leq s$  on  $0 < s < \infty$ , by putting  $s = g(t)^{1/\alpha}$  we get  $h(t)^{1/\alpha} \leq g(t)^{1/\alpha}$  on  $0 < t < \infty$ . The following set was introduced in [24,25]

$$\mathbf{LP}_{+}(I) := \{h \mid h \text{ is defined on } I, \ h(t) > 0 \text{ on } (a,b), \ \log h \in \mathbf{P}(a,b) \}.$$
$$\mathbf{P}_{+}^{-1}(I) := \{h \mid h \text{ is increasing on } I, \ h((a,b)) = (0,\infty), h^{-1} \in \mathbf{P}(h(I)) \}$$

If  $-\infty < a$ , identifying h on (a, b) as its natural extension to [a, b) gives  $\mathbf{LP}_+(a, b) = \mathbf{LP}_+[a, b)$ ,  $\mathbf{P}_+^{-1}(a, b) = \mathbf{P}_+^{-1}[a, b)$ . Notice that  $h \in \mathbf{P}_+^{-1}(a, b)$  if and only if  $t \leq h(t)$  on (a, b) and  $h(a, b) = (0, \infty)$ .

Download English Version:

## https://daneshyari.com/en/article/4599326

Download Persian Version:

https://daneshyari.com/article/4599326

Daneshyari.com