Notes on the second largest eigenvalue of a graph

Slobodan K. Simić ${ }^{\text {a,b,1 }}$, Milica Anđelićc ${ }^{\mathrm{c}, *, 2}$, Carlos M. da Fonseca ${ }^{\mathrm{d}, \mathrm{e}}$, Dejan Živković ${ }^{\text {f,3 }}$
${ }^{\text {a }}$ State University of Novi Pazar, Vuka Karadžića bb, 36300 Novi Pazar, Serbia
${ }^{\text {b }}$ Mathematical Institute SANU, Knez Mihailova 36, 11001 Belgrade, Serbia
${ }^{\text {c }}$ Departamento de Matemática, Universidade de Aveiro, 3810-193 Aveiro, Portugal
${ }^{\text {d }}$ Department of Mathematics, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait
${ }^{\text {e }}$ Departamento de Matemática, Universidade de Coimbra, 3001-501 Coimbra, Portugal
${ }^{\mathrm{f}}$ Faculty of Informatics and Computing, Singidunum University, Belgrade, Serbia

A R T I C L E I N F O

Article history:

Received 10 January 2014
Accepted 20 September 2014
Available online 10 October 2014
Submitted by D. Stevanovic

MSC:

05C50
15A18

Keywords:
Graph
Adjacency matrix

A B S T R A C T

For a fixed real number r we give several necessary and/or sufficient conditions for a graph to have the second largest eigenvalue of the adjacency matrix, or signless Laplacian matrix, less then or equal to r.
© 2014 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let $G=(V(G), E(G))$ be a simple graph of order $n=|V(G)|$ and size $m=|E(G)|$. If an edge $e \in E(G)$ joins vertices $u, v \in V(G)$ then, for short, $u v$ stands for e. The adjacency matrix of G is denoted by $A(G)$, while $P(x ; G)=\operatorname{det}(x I-A(G))$ is the characteristic polynomial of G. Roots of $P(x ; G)$ comprise the spectrum of G, denoted by $\operatorname{Sp}(G)$ (note, it is real since $A(G)$ is symmetric). Let $\lambda_{1}(G) \geq \lambda_{2}(G) \geq \cdots \geq \lambda_{n}(G)$ be the eigenvalues of G given in non-increasing order. Recall, $\lambda_{1}(G)>\lambda_{2}(G)$ if G is connected (in sequel, if not told otherwise, we will consider only connected graphs). In particular, $\lambda_{1}(G)$ is called the index of G. For a given $\lambda \in \operatorname{Sp}(G), m(\lambda ; G)$ denotes its multiplicity (note, since $A(G)$ is symmetric, the algebraic and geometric multiplicities of λ are equal). The eigenvalues of multiplicity one are called the simple eigenvalues.

The equation $A \mathbf{x}=\lambda \mathbf{x}$ is called the eigenvalue equation of A, or of a labeled graph G if $A=A(G)$. For a fixed $\lambda \in \operatorname{Sp}(G)$, its non-trivial solution $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is a λ-eigenvector of A, or of a labeled graph G. In particular, if $\lambda=\lambda_{1}(G)$ then the corresponding vector (with positive coordinates) is called a principal eigenvector of G.

In the scalar form, for any $\lambda \in \operatorname{Sp}(G)$, the eigenvalue equation reads:

$$
\lambda x_{u}=\sum_{v \sim u} x_{v}
$$

where $u \in V(G)$. The null space of $A(G)-\lambda I$ is called the eigenspace of G and is denoted by $\mathcal{E}(\lambda ; G)$. Note also that each eigenvector can be interpreted as a mapping $\mathbf{x}: V(G) \rightarrow \mathbb{R}$. So if $v \in V(G), \mathbf{x}(v)$ and x_{v} can be identified.

The spectral decomposition of any symmetric matrix A, or of graph G if $A=A(G)$, is given by $A=\mu_{1} P_{1}+\mu_{2} P_{2}+\cdots+\mu_{\ell} P_{\ell}$, where μ_{i} 's are the distinct eigenvalues of A. For $i=1,2, \ldots, \ell, P_{i}$ is a projection matrix which maps the whole space \mathbb{R}^{n} onto $\mathcal{E}\left(\mu_{i} ; G\right)$. The quantity $\alpha_{i, v}=\left|P_{i} \mathbf{e}_{v}\right|$ is called the graph angle between \mathbf{e}_{v} and $\mathcal{E}\left(\mu_{i}\right)$ (or, more precisely, it is just the cosine of that angle).

We denote by $G-u(G-U)$ the subgraph of G obtained by deleting a vertex u (resp. a vertex set U) from G. If $U \subseteq V(G)$ then $\langle U\rangle$ denotes the induced subgraph of G. If H is an induced subgraph of G, then we write $H \subseteq G$ (or $H \subset G$ if H is a proper subgraph of G). If $H \subset G$, and if $\{u\} \cap V(H)=\emptyset$ (or, more generally, $U \cap V(H)=\emptyset$) then $H+u=\langle V(H) \cup\{u\}\rangle($ resp. $H+U=\langle V(H) \cup U\rangle)$.

Recall, in general, if any vertex is deleted from some graph, then the multiplicity of any eigenvalue changes at most by one (by the Interlacing theorem; see, for example, [2, p. 17]). A vertex v of G is called the downer (neutral, Parter) vertex for μ_{i} if $m\left(\mu_{i} ; G-v\right)$ is equal to $m\left(\mu_{i} ; G\right)-1$ (resp. $\left.m\left(\mu_{i} ; G\right), m\left(\mu_{i} ; G\right)+1\right)$. Note, if vertex v is a downer for μ_{i} then $\alpha_{i, v} \neq 0$ (for more details, see [4]).

https://daneshyari.com/en/article/4599334

Download Persian Version:
https://daneshyari.com/article/4599334

Daneshyari.com

[^0]: The paper is realized as a contribution to the bilateral project "Applications of graph spectra in Computer Science" supported by Serbia and Portugal.

 * Corresponding author.

 E-mail addresses: sksimic@mi.sanu.ac.rs (S.K. Simić), milica.andelic@ua.pt (M. Anđelić), carlos@sci.kuniv.edu.kw (C.M. da Fonseca), dzivkovic@singidunum.ac.rs (D. Živković).
 1 The author thanks Serbian Ministry of Sciences, Project 174033 and Project III 044006.
 ${ }^{2}$ The author thanks the project Cloud Thinking (CENTRO-07-ST24-FEDER-002031), co-funded by QREN and CIDMA - Center for Research and Development in Mathematics and Applications, University of Aveiro, Portugal.
 ${ }^{3}$ The author thanks Serbian Ministry of Sciences, Project III 044006.

