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For a fixed real number r we give several necessary and/or 
sufficient conditions for a graph to have the second largest 
eigenvalue of the adjacency matrix, or signless Laplacian 
matrix, less then or equal to r.
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1. Introduction

Let G = (V (G), E(G)) be a simple graph of order n = |V (G)| and size m = |E(G)|. 
If an edge e ∈ E(G) joins vertices u, v ∈ V (G) then, for short, uv stands for e. The 
adjacency matrix of G is denoted by A(G), while P (x; G) = det(xI − A(G)) is the 
characteristic polynomial of G. Roots of P (x; G) comprise the spectrum of G, denoted 
by Sp(G) (note, it is real since A(G) is symmetric). Let λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G)
be the eigenvalues of G given in non-increasing order. Recall, λ1(G) > λ2(G) if G is 
connected (in sequel, if not told otherwise, we will consider only connected graphs). In 
particular, λ1(G) is called the index of G. For a given λ ∈ Sp(G), m(λ; G) denotes its 
multiplicity (note, since A(G) is symmetric, the algebraic and geometric multiplicities of 
λ are equal). The eigenvalues of multiplicity one are called the simple eigenvalues.

The equation Ax = λx is called the eigenvalue equation of A, or of a labeled graph 
G if A = A(G). For a fixed λ ∈ Sp(G), its non-trivial solution x = (x1, x2, . . . , xn)T
is a λ-eigenvector of A, or of a labeled graph G. In particular, if λ = λ1(G) then the 
corresponding vector (with positive coordinates) is called a principal eigenvector of G.

In the scalar form, for any λ ∈ Sp(G), the eigenvalue equation reads:

λxu =
∑

v∼u

xv,

where u ∈ V (G). The null space of A(G) − λI is called the eigenspace of G and is 
denoted by E(λ; G). Note also that each eigenvector can be interpreted as a mapping 
x : V (G) → R. So if v ∈ V (G), x(v) and xv can be identified.

The spectral decomposition of any symmetric matrix A, or of graph G if A = A(G), is 
given by A = μ1P1 +μ2P2 + · · ·+μ�P�, where μi’s are the distinct eigenvalues of A. For 
i = 1, 2, . . . , �, Pi is a projection matrix which maps the whole space Rn onto E(μi; G). 
The quantity αi,v = |Piev| is called the graph angle between ev and E(μi) (or, more 
precisely, it is just the cosine of that angle).

We denote by G −u (G −U) the subgraph of G obtained by deleting a vertex u (resp. 
a vertex set U) from G. If U ⊆ V (G) then 〈U〉 denotes the induced subgraph of G. If 
H is an induced subgraph of G, then we write H ⊆ G (or H ⊂ G if H is a proper 
subgraph of G). If H ⊂ G, and if {u} ∩ V (H) = ∅ (or, more generally, U ∩ V (H) = ∅) 
then H + u = 〈V (H) ∪ {u}〉 (resp. H + U = 〈V (H) ∪ U〉).

Recall, in general, if any vertex is deleted from some graph, then the multiplicity 
of any eigenvalue changes at most by one (by the Interlacing theorem; see, for exam-
ple, [2, p. 17]). A vertex v of G is called the downer (neutral, Parter) vertex for μi if 
m(μi;G− v) is equal to m(μi; G) − 1 (resp. m(μi; G), m(μi; G) + 1). Note, if vertex v is 
a downer for μi then αi,v �= 0 (for more details, see [4]).
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