

Free semidefinite representation of matrix power functions

J. William Helton, Jiawang Nie, Jeremy S. Semko*

University of California San Diego, United States

ARTICLE INFO

Article history: Received 17 May 2013 Accepted 26 September 2014 Available online 10 October 2014 Submitted by T. Damm

MSC: primary 90C22, 15-XX secondary 47H07

Keywords: Matrix convexity Epigraph Hypograph Free semidefinite representation Linear matrix inequalities Linear pencil Semidefinite programing

ABSTRACT

Consider the matrix power function X^p defined over the cone of positive definite matrices S^n_{++} . It is known that X^p is convex over S^n_{++} if $p \in [-1,0] \cup [1,2]$ and X^p is concave over S^n_{++} if $p \in [0,1]$. We show that the hypograph of X^p admits a free semidefinite representation if $p \in [0,1]$ is rational, and the epigraph of X^p admits a free semidefinite representation if $p \in [-1,0] \cup [1,2]$ is rational.

@ 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let S^n be the space of real symmetric $n \times n$ matrices, and S^n_+ (resp. S^n_{++}) be the cone of positive semidefinite (resp. definite) matrices in S^n . For $p \in \mathbb{R}$, the matrix power function X^p on S^n is defined as $X^p = Q^T \Lambda^p Q$ when this makes sense, with $X = Q^T \Lambda Q$ an orthogonal spectral decomposition. It is well known (cf. [3, p. 147]) that

 $\label{eq:http://dx.doi.org/10.1016/j.laa.2014.09.038} 0024-3795/©$ 2014 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

- (1) X^p is convex over \mathcal{S}_{++}^n if $p \in [-1,0] \cup [1,2]$, and
- (2) X^p is concave over \mathcal{S}^n_+ if $p \in [0, 1]$.

Here, the concavity and convexity are defined as usual for functions of matrices. The goal of this paper is to give a *free semidefinite representation* (i.e., in terms of linear matrix inequalities whose construction is independent of the matrix dimension n) for the epigraph or hypograph of the matrix power function X^p for a range of rational exponents p.

1.1. Convex and concave matrix-valued functions

Let \mathcal{D} be a convex subset of the space of the Cartesian product $(\mathcal{S}^n)^g$, with g > 0 an integer. A matrix-valued function $f : \mathcal{D} \to \mathcal{S}^n$ is **convex** if

$$f(tX + (1-t)Y) \preceq tf(X) + (1-t)f(Y), \quad \forall t \in [0,1]$$

for all $X, Y \in \mathcal{D}$. If -f is convex, we say that f is **concave**. The **epigraph** (resp. **hypo-graph**) of f is then defined as

$$\left\{ (X,Y) \in \mathcal{D} \times \mathcal{S}^n : f(X) \preceq Y \right\} \qquad \left(resp. \quad \left\{ (X,Y) \in \mathcal{D} \times \mathcal{S}^n : f(X) \succeq Y \right\} \right).$$

The following is a straightforward but useful fact. Due to lacking of a suitable reference in case of matrix-valued functions, we include a short proof here.

Lemma 1.1. Suppose \mathcal{D} is a convex set. Then f is convex over \mathcal{D} if and only if its epigraph is convex. Similarly, f is concave over \mathcal{D} if and only if its hypograph is convex.

Proof. We will prove only the first half of the proposition as the second half clearly follows from the first.

 (\Rightarrow) If (X, W) and (Y, Z) are in the epigraph of f and if $t \in [0, 1]$, then by the convexity of f,

$$f(tX + (1-t)Y) \leq tf(X) + (1-t)f(Y) \leq tW + (1-t)Z$$

so that (tX + (1 - t)Y, tW + (1 - t)Z) is in the epigraph of f.

(⇐) If $X, Y \in \mathcal{D}$ and $t \in \mathbb{R}$, then (X, f(X)) and (Y, f(Y)) are in the epigraph of f. Since the epigraph is convex, (tX + (1-t)Y, tf(X) + (1-t)f(Y)) is in the epigraph as well. But this says that $f(tX + (1-t)Y) \leq tf(X) + (1-t)f(Y)$. \Box

In the case that $f(X) \succeq 0$ for all $X \in \mathcal{D}$, we are often only interested in the pairs (X, Y) from the hypograph of f with $Y \succeq 0$. Thus, in this case, we slightly abuse terminology and refer to

$$\left\{ (X,Y) \in \mathcal{D} \times \mathcal{S}^n_+ : f(X) \succeq Y \right\}$$

348

Download English Version:

https://daneshyari.com/en/article/4599340

Download Persian Version:

https://daneshyari.com/article/4599340

Daneshyari.com