

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Superadditivity and derivative of operator functions

**LINEAR
ALGEBRA** and Its ana na
Applications

Mitsuru Uchiyama ^a*,*¹, Atsushi Uchiyama ^b*,*∗, Mariko Giga ^c

^a *Department of Mathematics, Interdisciplinary Faculty of Science and* b Department of Mathematical Sciences, Faculty of Science, Yamagata University,
Yamagata city, Yamagata 990-8560, Japan

Yamagata city, Yamagata 990-8560, Japan ^c *Department of Mathematics, Nippon Medical School, Kawasaki city, Kanagawa 221-0063, Japan*

A R T I C L E I N F O A B S T R A C T

Article history: Received 19 September 2013 Accepted 4 September 2014 Available online 14 October 2014 Submitted by P. Semrl

This paper is dedicated to Professor Tsuyoshi Ando

MSC: 47A56 47A63

Keywords: Matrix order Fréchet derivative Operator monotone function Operator concave function Operator convex function

We will show that if $\sum_{i \neq j} A_i A_j \geq 0$ for bounded operators $A_i \geq 0$ (*i* = 1, 2, ···, *n*), then $g(\sum_i A_i) \geq \sum_i g(A_i)$ for every operator convex function $g(t)$ on $[0, \infty)$ with $g(0) \leq 0$; in particular, $(\sum_i A_i) \log(\sum_i A_i) \geq \sum_i A_i \log A_i$ if each A_i is invertible. Let $A, B \geq 0$ and A be invertible. Then we will observe that the Fréchet derivative $Dq(sA)(B)$ is increasing on $0 \leq s \leq \infty$ for every operator convex function $q(t)$ on $(0, \infty)$ if and only if $AB + BA \geq 0$.

© 2014 Elsevier Inc. All rights reserved.

<http://dx.doi.org/10.1016/j.laa.2014.09.006> 0024-3795/© 2014 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

E-mail addresses: uchiyama@riko.shimane-u.ac.jp (M. Uchiyama), uchiyama@sci.kj.yamagata-u.ac.jp (A. Uchiyama), mariko@nms.ac.jp (M. Giga).

The author was supported in part by (JSPS) KAKENHI 25400116.

1. Introduction

Let *I* be an interval of the real axis and $f(t)$ a real continuous function defined on *I*. For a bounded Hermitian operator (or matrix) *A* on a Hilbert space whose spectrum is in $I, f(A)$ stands for the ordinary functional calculus. f is called an *operator monotone* (or *operator* decreasing) function on *I* if $f(A) \leq f(B)$ (or $f(A) \geq f(B)$) whenever $A \leq B$. It is evident that if $f(t)$ is operator monotone in the interior of *I* and continuous on *I*, then $f(t)$ is operator monotone on *I* itself. It is an essential fact that $f_{\lambda}(t) := \frac{\lambda t}{\lambda + t}$ is operator monotone on $(-\infty, -\lambda)$ and on $(-\lambda, \infty)$ for each λ . It is also well-known that t^a (0 < *a* ≤ 1) is operator monotone on [0, ∞) and so is log *t* on (0, ∞). A continuous function *g* defined on *I* is called an *operator convex function* on *I* if $g(sA + (1 - s)B) \le$ $sg(A)+(1-s)g(B)$ for every $0 < s < 1$ and for every pair of bounded Hermitian operators *A* and *B* whose spectra are both in *I*. An *operator concave function* is likewise defined. t^a (1 ≤ *a* ≤ 2) and *t* log *t* are both operator convex on [0, ∞). For further details, we refer the reader to $[2,8]$. It has been well-known that a non-negative continuous function $f(t)$ on $[0,\infty)$ is operator monotone if and only if $f(t)$ is operator concave. One of the authors $[12,15]$ (cf. $[7]$) extended this as follows:

A continuous function $f(t)$ defined on an infinite interval (a,∞) is operator monotone if and only if $f(t)$ is operator concave and $f(\infty) > -\infty$.

Let $h(t)$ be a non-negative concave (not necessarily operator concave) function on [0*,*∞). Since *h*(*t*) is increasing and *h*(*t*)*/t* is decreasing, *h*(*t*) is subadditive, namely $h(a + b) \leq h(a) + h(b)$. In [\[3\]](#page--1-0) (also see [\[1,14\]\)](#page--1-0) it was shown that

$$
||h(A + B)|| \le ||h(A) + h(B)||
$$

for every matrices $A, B \geq 0$ and for every unitarily invariant norm $\| \cdot \|$. Moslehian and Najafi [\[9\]](#page--1-0) have shown that for $A, B \ge 0$, if $AB + BA \ge 0$, then for any operator monotone function $f(t) \geq 0$ on $[0, \infty)$

$$
f(A+B) \le f(A) + f(B).
$$

We will show that if $\sum_{i \neq j} A_i A_j \geq 0$ for bounded self-adjoint operators A_i (*i* = $1, 2, \dots, n$, then for every operator monotone function $f(t) \geq 0$ on $[0, \infty)$

$$
f(A_1 + \cdots + A_n) \le f(A_1) + \cdots + f(A_n),
$$

and for every operator convex function with $q(0) \leq 0$

$$
g(A_1 + \cdots + A_n) \ge g(A_1) + \cdots + g(A_n).
$$

If $h(t)$ is a C^1 -function defined on an open interval, then the matrix function $h(X)$ is Fréchet differentiable and the derivative $Dh(A)(B)$ equals the Gateaux derivative $\frac{d}{dt}h(A + tB)|_{t=0}$. It is known that if $f(t)$ is operator monotone, the Fréchet derivative

Download English Version:

<https://daneshyari.com/en/article/4599344>

Download Persian Version:

<https://daneshyari.com/article/4599344>

[Daneshyari.com](https://daneshyari.com/)