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We will show that if 
∑

i �=j AiAj ≥ 0 for bounded operators 
Ai ≥ 0 (i = 1, 2, · · · , n), then g(

∑
i Ai) ≥

∑
i g(Ai) for every 

operator convex function g(t) on [0, ∞) with g(0) ≤ 0; in 
particular, (

∑
i Ai) log(

∑
i Ai) ≥

∑
i Ai logAi if each Ai is 

invertible. Let A, B ≥ 0 and A be invertible. Then we will 
observe that the Fréchet derivative Dg(sA)(B) is increasing 
on 0 < s < ∞ for every operator convex function g(t) on 
(0, ∞) if and only if AB + BA ≥ 0.
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1. Introduction

Let I be an interval of the real axis and f(t) a real continuous function defined on I. 
For a bounded Hermitian operator (or matrix) A on a Hilbert space whose spectrum is 
in I, f(A) stands for the ordinary functional calculus. f is called an operator monotone
(or operator decreasing) function on I if f(A) � f(B) (or f(A) � f(B)) whenever A � B. 
It is evident that if f(t) is operator monotone in the interior of I and continuous on I, 
then f(t) is operator monotone on I itself. It is an essential fact that fλ(t) := λt

λ+t is 
operator monotone on (−∞, −λ) and on (−λ, ∞) for each λ. It is also well-known that 
ta (0 < a ≤ 1) is operator monotone on [0, ∞) and so is log t on (0, ∞). A continuous 
function g defined on I is called an operator convex function on I if g(sA + (1 − s)B) �
sg(A) +(1 −s)g(B) for every 0 < s < 1 and for every pair of bounded Hermitian operators 
A and B whose spectra are both in I. An operator concave function is likewise defined. 
ta (1 ≤ a ≤ 2) and t log t are both operator convex on [0, ∞). For further details, we 
refer the reader to [2,8]. It has been well-known that a non-negative continuous function 
f(t) on [0, ∞) is operator monotone if and only if f(t) is operator concave. One of the 
authors [12,15] (cf. [7]) extended this as follows:
A continuous function f(t) defined on an infinite interval (a, ∞) is operator monotone if 
and only if f(t) is operator concave and f(∞) > −∞.

Let h(t) be a non-negative concave (not necessarily operator concave) function on 
[0, ∞). Since h(t) is increasing and h(t)/t is decreasing, h(t) is subadditive, namely 
h(a + b) ≤ h(a) + h(b). In [3] (also see [1,14]) it was shown that

∥∥h(A + B)
∥∥ ≤

∥∥h(A) + h(B)
∥∥

for every matrices A, B ≥ 0 and for every unitarily invariant norm ‖ ‖. Moslehian and 
Najafi [9] have shown that for A, B ≥ 0, if AB+BA ≥ 0, then for any operator monotone 
function f(t) ≥ 0 on [0, ∞)

f(A + B) ≤ f(A) + f(B).

We will show that if 
∑

i�=j AiAj ≥ 0 for bounded self-adjoint operators Ai (i =
1, 2, · · · , n), then for every operator monotone function f(t) ≥ 0 on [0, ∞)

f(A1 + · · · + An) ≤ f(A1) + · · · + f(An),

and for every operator convex function with g(0) ≤ 0

g(A1 + · · · + An) ≥ g(A1) + · · · + g(An).

If h(t) is a C1-function defined on an open interval, then the matrix function h(X)
is Fréchet differentiable and the derivative Dh(A)(B) equals the Gateaux derivative 
d
dth(A + tB)|t=0. It is known that if f(t) is operator monotone, the Fréchet derivative 
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