

Contents lists available at ScienceDirect

# Linear Algebra and its Applications

www.elsevier.com/locate/laa

# Superadditivity and derivative of operator functions



LINEAR ALGEBRA

plications

Mitsuru Uchiyama $^{\mathrm{a},1},$  Atsushi Uchiyama $^{\mathrm{b},*},$  Mariko Giga $^{\mathrm{c}}$ 

 <sup>a</sup> Department of Mathematics, Interdisciplinary Faculty of Science and Engineering, Shimane University, Matsue city, Shimane 690-8504, Japan
<sup>b</sup> Department of Mathematical Sciences, Faculty of Science, Yamagata University, Yamagata city, Yamagata 990-8560, Japan
<sup>c</sup> Department of Mathematics, Nippon Medical School, Kawasaki city, Kanagawa 221-0063, Japan

#### ARTICLE INFO

Article history: Received 19 September 2013 Accepted 4 September 2014 Available online 14 October 2014 Submitted by P. Semrl

This paper is dedicated to Professor Tsuyoshi Ando

MSC: 47A56 47A63

Keywords: Matrix order Fréchet derivative Operator monotone function Operator concave function Operator convex function

### ABSTRACT

We will show that if  $\sum_{i\neq j} A_i A_j \geq 0$  for bounded operators  $A_i \geq 0$   $(i = 1, 2, \dots, n)$ , then  $g(\sum_i A_i) \geq \sum_i g(A_i)$  for every operator convex function g(t) on  $[0, \infty)$  with  $g(0) \leq 0$ ; in particular,  $(\sum_i A_i) \log(\sum_i A_i) \geq \sum_i A_i \log A_i$  if each  $A_i$  is invertible. Let  $A, B \geq 0$  and A be invertible. Then we will observe that the Fréchet derivative Dg(sA)(B) is increasing on  $0 < s < \infty$  for every operator convex function g(t) on  $(0, \infty)$  if and only if  $AB + BA \geq 0$ .

@ 2014 Elsevier Inc. All rights reserved.

 $\label{eq:http://dx.doi.org/10.1016/j.laa.2014.09.006} 0024-3795 \end{tabular} 0214 \ \mbox{Elsevier Inc. All rights reserved}.$ 

 $<sup>\</sup>ast\,$  Corresponding author.

*E-mail addresses:* uchiyama@riko.shimane-u.ac.jp (M. Uchiyama), uchiyama@sci.kj.yamagata-u.ac.jp (A. Uchiyama), mariko@nms.ac.jp (M. Giga).

<sup>&</sup>lt;sup>1</sup> The author was supported in part by (JSPS) KAKENHI 25400116.

### 1. Introduction

Let I be an interval of the real axis and f(t) a real continuous function defined on I. For a bounded Hermitian operator (or matrix) A on a Hilbert space whose spectrum is in I, f(A) stands for the ordinary functional calculus. f is called an *operator monotone* (or *operator decreasing*) function on I if  $f(A) \leq f(B)$  (or  $f(A) \geq f(B)$ ) whenever  $A \leq B$ . It is evident that if f(t) is operator monotone in the interior of I and continuous on I, then f(t) is operator monotone on I itself. It is an essential fact that  $f_{\lambda}(t) := \frac{\lambda t}{\lambda + t}$  is operator monotone on  $(-\infty, -\lambda)$  and on  $(-\lambda, \infty)$  for each  $\lambda$ . It is also well-known that  $t^a$  ( $0 < a \leq 1$ ) is operator monotone on  $[0, \infty)$  and so is log t on  $(0, \infty)$ . A continuous function g defined on I is called an *operator convex function* on I if  $g(sA + (1-s)B) \leq$ sg(A) + (1-s)g(B) for every 0 < s < 1 and for every pair of bounded Hermitian operators A and B whose spectra are both in I. An *operator concave function* is likewise defined.  $t^a$  ( $1 \leq a \leq 2$ ) and t log t are both operator convex on  $[0, \infty)$ . For further details, we refer the reader to [2,8]. It has been well-known that a non-negative continuous function f(t) on  $[0, \infty)$  is operator monotone if and only if f(t) is operator concave. One of the authors [12,15] (cf. [7]) extended this as follows:

A continuous function f(t) defined on an infinite interval  $(a, \infty)$  is operator monotone if and only if f(t) is operator concave and  $f(\infty) > -\infty$ .

Let h(t) be a non-negative concave (not necessarily operator concave) function on  $[0, \infty)$ . Since h(t) is increasing and h(t)/t is decreasing, h(t) is subadditive, namely  $h(a+b) \leq h(a) + h(b)$ . In [3] (also see [1,14]) it was shown that

$$||h(A+B)|| \le ||h(A)+h(B)||$$

for every matrices  $A, B \ge 0$  and for every unitarily invariant norm || ||. Moslehian and Najafi [9] have shown that for  $A, B \ge 0$ , if  $AB + BA \ge 0$ , then for any operator monotone function  $f(t) \ge 0$  on  $[0, \infty)$ 

$$f(A+B) \le f(A) + f(B).$$

We will show that if  $\sum_{i \neq j} A_i A_j \geq 0$  for bounded self-adjoint operators  $A_i$   $(i = 1, 2, \dots, n)$ , then for every operator monotone function  $f(t) \geq 0$  on  $[0, \infty)$ 

$$f(A_1 + \dots + A_n) \le f(A_1) + \dots + f(A_n),$$

and for every operator convex function with  $g(0) \leq 0$ 

$$g(A_1 + \dots + A_n) \ge g(A_1) + \dots + g(A_n).$$

If h(t) is a  $C^1$ -function defined on an open interval, then the matrix function h(X) is Fréchet differentiable and the derivative Dh(A)(B) equals the Gateaux derivative  $\frac{d}{dt}h(A+tB)|_{t=0}$ . It is known that if f(t) is operator monotone, the Fréchet derivative

Download English Version:

https://daneshyari.com/en/article/4599344

Download Persian Version:

https://daneshyari.com/article/4599344

Daneshyari.com